首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heterogeneous ribonucleoproteins (hnRNPs) have key roles in RNA biogenesis, including pre-mRNP assembly, transport and cytoplasmic localization. Here we show by biochemical fractionation of nuclear extracts and protein-protein interaction assays that the A/B-type hnRNP CBF-A is in a multiprotein complex with hnRNP A2 and A3 and hnRNP U. Using RNA affinity chromatography and gel retardation assays, CBF-A was found to bind directly to RNA trafficking sequences in the 3'-UTR of the myelin basic protein (MBP) mRNA. In primary oligodendrocytes, astrocytes, neurons, and mouse forebrain sections, CBF-A revealed a characteristic granular cytoplasmic distribution. In mouse forebrain CBF-A-positive granules were preferentially found in regions with loosely bundled myelin fibers. In cultured oligodendrocytes, CBF-A was found to be specifically associated with endogenous MBP mRNA and CBF-A gene silencing resulted in the retention of MBP granules in the cell body. Finally, immunoelectron microscopy in differentiating oligodendrocytes showed that CBF-A is located in cytoplasmic granules that are often associated with the cytoskeleton. The results suggest that CBF-A is a novel transacting factor required for cytoplasmic mRNA transport and localization.  相似文献   

2.
The balance of power in RNA trafficking   总被引:1,自引:0,他引:1  
In the past two years, several different RNA trafficking pathways have been characterized in oligodendrocytes; similar trafficking pathways have been discovered in neuronal and retroviral systems; co-assembly of multiple different RNAs into the same granules has been analyzed as a mechanism for coordinating gene expression; and a new hypothesis for RNA trafficking, based on the balance of power between kinesin and dynein in individual RNA granules, has been proposed.  相似文献   

3.
In neurons, many different RNAs are targeted to dendrites where local expression of the encoded proteins mediates synaptic plasticity during learning and memory. It is not known whether each RNA follows a separate trafficking pathway or whether multiple RNAs are targeted to dendrites by the same pathway. Here, we show that RNAs encoding alpha calcium calmodulin-dependent protein kinase II, neurogranin, and activity-regulated cytoskeleton-associated protein are coassembled into the same RNA granules and targeted to dendrites by the same cis/trans-determinants (heterogeneous nuclear ribonucleoprotein [hnRNP] A2 response element and hnRNP A2) that mediate dendritic targeting of myelin basic protein RNA by the A2 pathway in oligodendrocytes. Multiplexed dendritic targeting of different RNAs by the same pathway represents a new organizing principle for coordinating gene expression at the synapse.  相似文献   

4.
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a trans-acting RNA-binding protein that mediates trafficking of RNAs containing the cis-acting A2 response element (A2RE). Previous work has shown that A2RE RNAs are transported to myelin in oligodendrocytes and to dendrites in neurons. hnRNP E1 is an RNA-binding protein that regulates translation of specific mRNAs. Here, we show by yeast two-hybrid analysis, in vivo and in vitro coimmunoprecipitation, in vitro cross-linking, and fluorescence correlation spectroscopy that hnRNP E1 binds to hnRNP A2 and is recruited to A2RE RNA in an hnRNP A2-dependent manner. hnRNP E1 is colocalized with hnRNP A2 and A2RE mRNA in granules in dendrites of oligodendrocytes. Overexpression of hnRNP E1 or microinjection of exogenous hnRNP E1 in neural cells inhibits translation of A2RE mRNA, but not of non-A2RE RNA. Excess hnRNP E1 added to an in vitro translation system reduces translation efficiency of A2RE mRNA, but not of nonA2RE RNA, in an hnRNP A2-dependent manner. These results are consistent with a model where hnRNP E1 recruited to A2RE RNA granules by binding to hnRNP A2 inhibits translation of A2RE RNA during granule transport.  相似文献   

5.
HnRNP A2 is an RNA trafficking protein that binds to a specific cis -acting RNA trafficking element (A2RE) in myelin basic protein RNA and other transported RNAs. A2RE/hnRNPA2 determinants mediate several different steps in RNA trafficking including granule assembly, transport to the plus ends of microtubules and translational activation. A yeast two hybrid screen designed to identify proteins that interact with hnRNP A2 selected a clone corresponding to the carboxyl terminal portion of TOG (tumor overexpressed gene), a microtubule-associated protein that regulates microtubule dynamics. Co-immunostaining of oligodendrocytes with antibody to hnRNPA2 and TOG revealed extensive colocalization of TOG with hnRNP A2 granules in the dendrites. A small population of hnRNP A2 granules lacked TOG and some regions of TOG staining lacked hnRNP A2. In oligodendrocytes injected with fluorescent A2RE RNA and stained for TOG, granules containing fluorescent RNA colocalized with TOG. Co-injection of anti-TOG antibody with fluorescent A2RE RNA decreased colocalization with TOG and increased transport of the injected RNA. These observations suggest that molecular interaction between hnRNP A2 and TOG serves to anchor A2RE mRNAs/hnRNPA2 granules at plus ends of microtubules.
Acknowledgements:   Supported by NIH NS19943 (EB) and NS15190 (JHC), and NMSS RG2843 (EB).  相似文献   

6.
7.
8.
HnRNP A2 is an RNA trafficking protein that binds to a specific cis‐acting RNA trafficking element (A2RE) in myelin basic protein RNA and other transported RNAs. A2RE/hnRNPA2 determinants mediate several different steps in RNA trafficking including granule assembly, transport to the plus ends of microtubules and translational activation. A yeast two hybrid screen designed to identify proteins that interact with hnRNP A2 selected a clone corresponding to the carboxyl terminal portion of TOG (tumor overexpressed gene), a microtubule‐associated protein that regulates microtubule dynamics. Co‐immunostaining of oligodendrocytes with antibody to hnRNPA2 and TOG revealed extensive colocalization of TOG with hnRNP A2 granules in the dendrites. A small population of hnRNP A2 granules lacked TOG and some regions of TOG staining lacked hnRNP A2. In oligodendrocytes injected with fluorescent A2RE RNA and stained for TOG, granules containing fluorescent RNA colocalized with TOG. Co‐injection of anti‐TOG antibody with fluorescent A2RE RNA decreased colocalization with TOG and increased transport of the injected RNA. These observations suggest that molecular interaction between hnRNP A2 and TOG serves to anchor A2RE mRNAs/hnRNPA2 granules at plus ends of microtubules. Acknowledgements: Supported by NIH NS19943 (EB) and NS15190 (JHC), and NMSS RG2843 (EB).  相似文献   

9.
Depending on its concentration, nitric oxide (NO) has beneficial or toxic effects. In pathological conditions, NO reacts with superoxide to form peroxynitrite, which nitrates proteins forming nitrotyrosine residues (3NY), leading to loss of protein function, perturbation of signal transduction, and cell death. 3NY immunoreactivity is present in many CNS diseases, particularly multiple sclerosis. Here, using the high flux NO donor, spermine-NONOate, we report that oligodendrocytes are resistant to NO, while motor neurons are NO sensitive. Motor neuron sensitivity correlates with the NO-dependent formation of 3NY, which is significantly more pronounced in motor neurons when compared with oligodendrocytes, suggesting peroxynitrite as the toxic molecule. The heme-metabolizing enzyme, heme-oxygenase-1 (HO1), is necessary for oligodendrocyte NO resistance, as demonstrated by loss of resistance after HO1 inhibition. Resistance is reinstated by peroxynitrite scavenging with uric acid further implicating peroxynitrite as responsible for NO sensitivity. Most importantly, differential sensitivity to NO is also present in cultures of primary oligodendrocytes and motor neurons. Finally, motor neurons cocultured with oligodendrocytes, or oligodendrocyte-conditioned media, become resistant to NO toxicity. Preliminary studies suggest oligodendrocytes release a soluble factor that protects motor neurons. Our findings challenge the current paradigm that oligodendrocytes are the exclusive target of multiple sclerosis pathology.  相似文献   

10.
11.
Reciprocal interactions between neurons and oligodendrocytes are not only crucial for myelination, but also for long-term survival of axons. Degeneration of axons occurs in several human myelin diseases, however the molecular mechanisms of axon-glia communication maintaining axon integrity are poorly understood. Here, we describe the signal-mediated transfer of exosomes from oligodendrocytes to neurons. These endosome-derived vesicles are secreted by oligodendrocytes and carry specific protein and RNA cargo. We show that activity-dependent release of the neurotransmitter glutamate triggers oligodendroglial exosome secretion mediated by Ca2+ entry through oligodendroglial NMDA and AMPA receptors. In turn, neurons internalize the released exosomes by endocytosis. Injection of oligodendroglia-derived exosomes into the mouse brain results in functional retrieval of exosome cargo in neurons. Supply of cultured neurons with oligodendroglial exosomes improves neuronal viability under conditions of cell stress. These findings indicate that oligodendroglial exosomes participate in a novel mode of bidirectional neuron-glia communication contributing to neuronal integrity.  相似文献   

12.
Dendritic RNAs are localized and translated in RNA granules. Here we use single-molecule imaging to count the number of RNA molecules in each granule and to record translation output from each granule using Venus fluorescent protein as a reporter. For RNAs encoding activity-regulated cytoskeletal-associated protein (ARC) or fragile X mental retardation protein (FMRP), translation events are spatially clustered near individual granules, and translational output from individual granules is either sporadic or bursty. The probability of bursty translation is greater for Venus-FMRP RNA than for Venus-ARC RNA and is increased in Fmr1-knockout neurons compared to wild-type neurons. Dihydroxyphenylglycine (DHPG) increases the rate of sporadic translation and decreases bursty translation for Venus-FMRP and Venus-ARC RNAs. Single-molecule imaging of translation in individual granules provides new insight into molecular, spatial, and temporal regulation of translation in granules.  相似文献   

13.
Myelin basic protein (MBP) mRNA is localized to myelin produced by oligodendrocytes of the central nervous system. MBP mRNA microinjected into oligodendrocytes in primary culture is assembled into granules in the perikaryon, transported along the processes, and localized to the myelin compartment. In this work, microinjection of various deleted and chimeric RNAs was used to delineate regions in MBP mRNA that are required for transport and localization in oligodendrocytes. The results indicate that transport requires a 21-nucleotide sequence, termed the RNA transport signal (RTS), in the 3′ UTR of MBP mRNA. Homologous sequences are present in several other localized mRNAs, suggesting that the RTS represents a general transport signal in a variety of different cell types. Insertion of the RTS from MBP mRNA into nontransported mRNAs, causes the RNA to be transported to the oligodendrocyte processes. Localization of mRNA to the myelin compartment requires an additional element, termed the RNA localization region (RLR), contained between nucleotide 1,130 and 1,473 in the 3′ UTR of MBP mRNA. Computer analysis predicts that this region contains a stable secondary structure. If the coding region of the mRNA is deleted, the RLR is no longer required for localization, and the region between nucleotide 667 and 953, containing the RTS, is sufficient for both RNA transport and localization. Thus, localization of coding RNA is RLR dependent, and localization of noncoding RNA is RLR independent, suggesting that they are localized by different pathways.  相似文献   

14.
In neurons, specific RNAs are assembled into granules, which are translated in dendrites, however the functional consequences of granule assembly are not known. Tumor overexpressed gene (TOG) is a granule-associated protein containing multiple binding sites for heterogeneous nuclear ribonucleoprotein (hnRNP) A2, another granule component that recognizes cis-acting sequences called hnRNP A2 response elements (A2REs) present in several granule RNAs. Translation in granules is sporadic, which is believed to reflect monosomal translation, with occasional bursts, which are believed to reflect polysomal translation. In this study, TOG expression was conditionally knocked out (TOG cKO) in mouse hippocampal neurons using cre/lox technology. In TOG cKO cultured neurons granule assembly and bursty translation of activity-regulated cytoskeletal associated (ARC) mRNA, an A2RE RNA, are disrupted. In TOG cKO brain slices synaptic sensitivity and long term potentiation (LTP) are reduced. TOG cKO mice exhibit hyperactivity, perseveration and impaired short term habituation. These results suggest that in hippocampal neurons TOG is required for granule assembly, granule translation and synaptic plasticity, and affects behavior.  相似文献   

15.
A diverse set of mRNA-binding proteins (BPs) regulate local translation in neurons. However, little is known about the role(s) played by a family of cold-inducible, glycine-rich mRNA-BPs. Unlike neuronal mRNA-BPs characterized thus far, these proteins are induced by hypothermia and are comprised of one RNA recognition motif and an adjacent arginine- and glycine-rich domain. We studied the expression and function of the RNA-binding motif protein 3 (RBM3), a member of this family, in neurons. RBM3 was expressed in multiple brain regions, with the highest levels in cerebellum and olfactory bulb. In dissociated neurons, RBM3 was observed in nuclei and in a heterogeneous population of granules within dendrites. In sucrose gradient assays, RBM3 cofractionated with heavy mRNA granules and multiple components of the translation machinery. Two alternatively spliced RBM3 isoforms that differed by a single arginine residue were identified in neurons; both were post-translationally modified. The variant lacking the spliced arginine exhibited a higher dendritic localization and was the only isoform present in astrocytes. When overexpressed in neuronal cell lines, RBM3 isoforms-enhanced global translation, the formation of active polysomes, and the activation of initiation factors. These data suggest that RBM3 plays a distinctive role in enhancing translation in neurons.  相似文献   

16.
17.
One of the most extensively studied of mammalian cells is the oligodendrocyte, the myelin-forming cell of the central nervous system. The ancestry and development of this cell have been studied with every approach utilized by developmental biologists. Such detailed efforts have the potential of providing paradigms of relevance to those interested in analyzing the ancestry and development of any cell type.One of the striking features of studies on the development of oligodendrocytes is that different analytical approaches have led to strikingly different theoretical views regarding the ancestry of these cells. On one extreme is the hypothesis that the steps leading to the generation of oligodendrocytes begin with the generation of a glial-restricted precursor (GRP) cell from neuroepithelial stem cells. GRP cells are thought to be capable of giving rise to all glial cells (including oligodendrocytes and multiple astrocyte populations), but not to neurons, a process that appears to require progression through further stages of greater lineage restriction. On the other extreme is the hypothesis that oligodendrocytes are derived from a precursor cell that generates only motor neurons and oligodendrocytes, with astrocytes being generated through a separate lineage. In this review, we critically consider the various contributions to understanding the ancestry of oligodendrocytes, with particular attention to the respective merits of the GRP cell vs. the motor neuron-oligodendrocyte precursor (MNOP) cell hypothesis. We draw the conclusion that, at present, the strengths of the GRP cell hypothesis outweigh those of the MNOP hypothesis and other hypotheses suggesting oligodendrocytes are developmentally more related to motor neurons than to astrocytes. Moreover, it is clear from existing data that, following the period of motor neuron generation, the major glial precursor cell in the embryonic spinal cord is the GRP cell, and that multiple previous studies on the earliest stages of oligodendrocyte generation in the developing spinal cord have been focused on a differentiation stage of GRP cells.  相似文献   

18.
In neural cells, such as oligodendrocytes and neurons, transport of certain RNAs along microtubules is mediated by the cis-acting heterogeneous nuclear ribonucleoprotein A2 response element (A2RE) trafficking element and the cognate trans-acting heterogeneous nuclear ribonucleoprotein (hnRNP) A2 trafficking factor. Using a yeast two-hybrid screen, we have identified a microtubule-associated protein, tumor overexpressed gene (TOG)2, as an hnRNP A2 binding partner. The C-terminal third of TOG2 is sufficient for hnRNP A2 binding. TOG2, the large protein isoform of TOG, is the only isoform detected in oligodendrocytes in culture. TOG coimmunoprecipitates with hnRNP A2 present in the cytoskeleton (CSK) fraction of neural cells, and both coprecipitate with microtubule stabilized pellets. Staining with anti-TOG reveals puncta that are localized in proximity to microtubules, often at the plus ends. TOG is colocalized with hnRNP A2 and A2RE-mRNA in trafficking granules that remain associated with CSK-insoluble tissue. These data suggest that TOG mediates the association of hnRNP A2-positive granules with microtubules during transport and/or localization.  相似文献   

19.
mRNA is transported to the dendritic regions by forming RNA granules, an aggregate of mRNA, ribosomal proteins, rRNA, and RNA-binding proteins such as Staufen. In this study, the dendritic transport of RNA granules was measured using the individual antibodies to ribosome-specific markers such as ribosomal L4 or S6 protein, and Y10B, a monoclonal antibody specific to rRNA. All the markers showed significant immunoreactivity in the dendritic regions of the hippocampal neurons. In addition, a GFP-tagged Staufen, a marker protein of the RNA granules, was colocalized with the Y10B and S6 signals in the dendrites. The S6 signals were also colocalized with the Y10B signals in the dendrites. Consistent with previous studies, the depolarization induced by KCl stimulation increased the ribosomal level, revealed by the S6 or Y10B immunostaining in the distal dendrites. These results demonstrate the utility of ribosomal markers for detecting the RNA granules or mRNA transport in dendrites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号