首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Bacteroides thetaiotaomicron, a gram-negative colonic anaerobe, can utilize three forms of starch: amylose, amylopectin, and pullulan. Previously, a neopullulanase, a pullulanase, and an alpha-glucosidase from B. thetaiotaomicron had been purified and characterized biochemically. The neopullulanase and alpha-glucosidase appeared to be the main enzymes involved in the breakdown of starch, because they were responsible for most of the starch-degrading activity detected in B. thetaiotaomicron cell extracts. To determine the importance of these enzymes in the starch utilization pathway, we cloned the genes encoding the neopullulanase and alpha-glucosidase. The gene encoding the neopullulanase (susA) was located upstream of the gene encoding the alpha-glucosidase (susB). Both genes were closely linked to another starch utilization gene, susC, which encodes a 115-kDa outer membrane protein that is essential for growth on starch. The gene encoding the pullulanase, pulI, was not located in this region in the chromosome. Disruption of the neopullulanase gene, susA, reduced the rate of growth on starch by about 30%. Elimination of susA in this strain allowed us to detect a low residual level of enzyme activity, which was localized to the membrane fraction. Previously, we had shown that a disruption in the pulI gene did not affect the rate of growth on pullulan. We have now shown that a double mutant, with a disruption in susA and in the pullulanase gene, pulI, was also able to grow on pullulan. Thus, there is at least one other starch-degrading enzyme besides the neopullulanase and the pullulanase. Disruption of the alpha-glucosidase gene, susB, reduced the rate of growth on starch only slightly. No residual alpha-glucosidase activity was detectable in extracts from this strain. Since this strain could still grow on maltose, maltotriose, and starch, there must be at least one other enzyme capable of degrading the small oligomers produced by the starch-degrading enzymes. Our results show that the starch utilization system of B. thetaiotaomicron is quite complex and contains a number of apparently redundant degradative enzymes.  相似文献   

2.
3.
Previously, we constructed a gene disruption in the pullulanase I gene of Bacteroides thetaiotaomicron 5482A. This mutant, designated B. thetaiotaomicron 95-1, had a lower level of pullulanase specific activity than did wild-type B. thetaiotaomicron but still exhibited a substantial amount of pullulanase activity. Characterization of the remaining pullulanase activity present in B. thetaiotaomicron 95-1 has identified an alpha(1----4)-D-glucosidic bond cleaving pullulanase which has been tentatively designated a neopullulanase. The neopullulanase (pullulanase II) is a 70-kDa soluble protein which cleaves alpha(1----4)-D-glucosidic bonds in pullulan to produce panose. The neopullulanase also cleaved alpha(1----4) bonds in amylose and in oligosaccharides of maltotriose through maltoheptaose in chain length. An alpha-glucosidase from B. thetaiotaomicron 95-1 was characterized. The alpha-glucosidase was partially purified to a preparation containing three proteins of 80, 57, and 50 kDa. Pullulan and amylose were not hydrolyzed by the alpha-glucosidase. alpha(1----4)-D-Glucosidic oligosaccharides from maltose to maltoheptaose were hydrolyzed to glucose by the alpha-glucosidase. The alpha-glucosidase also hydrolyzed alpha(1----6)-linked oligosaccharides such as panose (the product of the pullulanase II action on pullulan) and isomaltotriose.  相似文献   

4.
Mutagenesis of Bacteroides thetaiotaomicron with the transposon Tn4351 produced five classes of mutants that were not able to grow on amylose or amylopectin. These classes of mutants differed in their ability to grow on maltoheptaose (G7) and in the level of starch-degrading enzymes produced when bacteria were grown on maltose. All of the mutants were deficient in starch binding. Since one class of mutants retained normal levels of starch-degrading enzymes, this indicates that binding of the starch molecule by a cell surface receptor is necessary for starch utilization by B. thetaiotaomicron. Analysis of a starch-negative mutant that grew on G7 indicated that B. thetaiotaomicron possessed two starch-binding components or sites. One component (site A), apparently missing in this mutant, had an absolute preference for larger starch oligomers, whereas the other component (site M) also had a high affinity for maltodextrins (G4 through G7). Mutants not able to grow on maltodextrins (greater than G4) probably lacked both of these binding components. Only one class of mutants did not grow normally on maltose, but instead had a 4- to 5-h lag on maltose and a slower growth rate than the wild type. This class of mutants did not produce any of the starch-degrading enzymes or bind starch, even when growing on maltose. Such a phenotype probably resulted from transposon inactivation of a central regulatory gene or a gene encoding an enzyme that produces the inducer. The fact that both the degradative enzymes and the starch-binding activity were affected in this mutant indicates that genes encoding the cell surface starch-binding site are under the same regulatory control as genes encoding the enzymes.  相似文献   

5.
6.
The HpMAL2 gene of the MAL gene cluster of Hansenula polymorpha codes for a permease similar to yeast maltose and alpha-glucoside transporters. Genomic disruption of HpMAL2 resulted in an inability of cells to grow on maltose, sucrose, trehalose, maltotriose and turanose, as well as a lack of p-nitrophenyl-alpha-D-glucopyranoside (PNPG) transport. PNPG uptake was competitively inhibited by all these substrates, with Ki values between 0.23 and 1.47 mM. Transport by HpMal2p was sensitive to pH and a protonophore carbonyl cyanide-m-chlorophenylhydrazone (CCCP), revealing its energization by the proton gradient over the cell membrane. Although HpMAL2 was responsible for trehalose uptake, its expression was not induced during trehalose growth. A maltase disruption mutant did not grow on maltotriose and turanose, whereas it showed normal growth on trehalose, demonstrating the dispensability of maltase for intracellular hydrolysis of trehalose. In a Genolevures clone pBB0AA011B12, the promoter region and the N-terminal fragment of the putative transactivator of MAL genes is located adjacent to HpMAL2. A reporter gene assay showed that expression from that promoter was induced by maltose and sucrose, repressed by glucose, and derepressed during glycerol and trehalose growth. Therefore, we presume that the gene encodes a functional regulator.  相似文献   

7.
8.
9.
We have constructed a regulated plasmid vector for Streptococcus pneumoniae, based on the streptococcal broad-host-range replicon pLS1. As a reporter gene, we subcloned the gfp gene from Aequorea victoria, encoding the green fluorescent protein. This gene was placed under the control of the inducible P(M) promoter of the S. pneumoniae malMP operon which, in turn, is regulated by the product of the pneumococcal malR gene. Binding of MalR protein to the P(M) promoter is inactivated by growing the cells in maltose-containing media. Highly regulated gene expression was achieved by cloning in the same plasmid the P(M)-gfp cassette and the malR gene, thus providing the MalR regulator in cis. Pneumococcal cells harboring this vector gave a linear response of GFP synthesis in a maltose-dependent mode without detectable background levels in the absence of the inducer.  相似文献   

10.
Maltotriose utilization by Saccharomyces cerevisiae and closely related yeasts is important to industrial processes based on starch hydrolysates, where the trisaccharide is present in significant concentrations and often is not completely consumed. We undertook an integrated study to better understand maltotriose metabolism in a mixture with glucose and maltose. Physiological data obtained for a particularly fast-growing distiller's strain (PYCC 5297) showed that, in contrast to what has been previously reported for other strains, maltotriose is essentially fermented. The respiratory quotient was, however, considerably higher for maltotriose (0.36) than for maltose (0.16) or glucose (0.11). To assess the role of transport in the sequential utilization of maltose and maltotriose, we investigated the presence of genes involved in maltotriose uptake in the type strain of Saccharomyces carlsbergensis (PYCC 4457). To this end, a previously constructed genomic library was used to identify maltotriose transporter genes by functional complementation of a strain devoid of known maltose transporters. One gene, clearly belonging to the MAL transporter family, was repeatedly isolated from the library. Sequence comparison showed that the novel gene (designated MTY1) shares 90% and 54% identity with MAL31 and AGT1, respectively. However, expression of Mty1p restores growth of the S. cerevisiae receptor strain on both maltose and maltotriose, whereas the closely related Mal31p supports growth on maltose only and Agt1p supports growth on a wider range of substrates, including maltose and maltotriose. Interestingly, Mty1p displays higher affinity for maltotriose than for maltose, a new feature among all the alpha-glucoside transporters described so far.  相似文献   

11.
12.
Maltotriose utilization by Saccharomyces cerevisiae and closely related yeasts is important to industrial processes based on starch hydrolysates, where the trisaccharide is present in significant concentrations and often is not completely consumed. We undertook an integrated study to better understand maltotriose metabolism in a mixture with glucose and maltose. Physiological data obtained for a particularly fast-growing distiller's strain (PYCC 5297) showed that, in contrast to what has been previously reported for other strains, maltotriose is essentially fermented. The respiratory quotient was, however, considerably higher for maltotriose (0.36) than for maltose (0.16) or glucose (0.11). To assess the role of transport in the sequential utilization of maltose and maltotriose, we investigated the presence of genes involved in maltotriose uptake in the type strain of Saccharomyces carlsbergensis (PYCC 4457). To this end, a previously constructed genomic library was used to identify maltotriose transporter genes by functional complementation of a strain devoid of known maltose transporters. One gene, clearly belonging to the MAL transporter family, was repeatedly isolated from the library. Sequence comparison showed that the novel gene (designated MTY1) shares 90% and 54% identity with MAL31 and AGT1, respectively. However, expression of Mty1p restores growth of the S. cerevisiae receptor strain on both maltose and maltotriose, whereas the closely related Mal31p supports growth on maltose only and Agt1p supports growth on a wider range of substrates, including maltose and maltotriose. Interestingly, Mty1p displays higher affinity for maltotriose than for maltose, a new feature among all the α-glucoside transporters described so far.  相似文献   

13.
14.
Transglucosylation activities of spinach alpha-glucosidase I and IV, which have different substrate specificity for hydrolyzing activity, were investigated. In a maltose mixture, alpha-glucosidase I, which has high activity toward not only maltooligosaccharides but also soluble starch and can hydrolyze isomaltose, produced maltotriose, isomaltose, and panose, and alpha-glucosidase IV, which has high activity toward maltooligosaccharides but faint activity toward soluble starch and isomaltose, produced maltotriose, kojibiose, and 2,4-di-alpha-D-glucosyl-glucose. Transglucosylation to sucrose by alpha-glucosidase I and IV resulted in the production of theanderose and erlose, respectively, showing that spinach alpha-glucosidase I and IV are useful to synthesize the alpha-1,6-glucosylated and alpha-1,2- and 1,4-glucosylated products, respectively.  相似文献   

15.
The amino acid composition of two forms of alpha-glucosidase from the yeast Saccharomyces cerevisiae-II was established and the values of Km, V, kcat and kcat/Km for maltose, maltotriose and p-nitrophenyl-alpha-D-glucopyranoside (PNPG) were determined. PNPG possessed a much higher affinity for the enzyme as compared to sucrose, maltose and maltotriose. The value of V decreased in the following order: PNPG greater than sucrose greater than maltose greater than greater than maltotriose. No differences between the kinetic parameters of individual forms of alpha-glucosidase were observed. Glucose, fructose and methyl-alpha-glucoside act as competitive inhibitors. The two forms of alpha-glucosidase under study have an identical pH optimum and thermal stability.  相似文献   

16.
Bacteroides thetaiotaomicron can utilize amylose, amylopectin, and pullulan as sole sources of carbon and energy. The enzymes that degrade these polysaccharides were found to be primarily cell associated rather than extracellular. Although some activity was detected in extracellular fluid, this appeared to be the result of cell lysis. The cell-associated amylase, amylopectinase, and pullulanase activities partitioned similarly to the periplasmic marker, acid phosphatase, when cells were exposed to a cold-shock treatment. Two other enzymes associated with starch breakdown, alpha-glucosidase and maltase, appeared to be located in the cytoplasm. Intact cells of B. thetaiotaomicron were found to bind 14C-starch. Binding was probably mediated by a protein because it was saturable and was decreased by treatment of cells with proteinase K. Results of competition experiments showed that the starch-binding proteins had a preference for maltodextrins larger than maltohexaose and a low affinity for maltose and maltotriose. Both the degradative enzymes and starch binding were induced by maltose. These findings indicate that starch utilization by B. thetaiotaomicron apparently does not involve secretion of extracellular enzymes. Rather, binding of the starch molecule to the cell surface appears to be a first step to passing the molecule through the outer membrane and into the periplasmic space.  相似文献   

17.
An endophytic fungus, Fusicoccum sp. BCC4124, showed strong amylolytic activity when cultivated on multi-enzyme induction enriched medium and agro-industry substrates. alpha-Amylase and alpha-glucosidase activities were highly induced in the presence of maltose and starch. The purified target alpha-amylase, Amy-FC1, showed strong hydrolytic activity on soluble starch (kcat/Km=6.47 x 10(3) min(-1)(ml/mg)) and selective activity on gamma- and beta-cyclodextrins, but not on alpha-cyclodextrin. The enzyme worked optimally at 70 degrees C in a neutral pH range with t(1/2) of 240 min in the presence of Ca(2+) and starch. Maltose, matotriose, and maltotetraose were the major products from starch hydrolysis but prolonged reaction led to the production of glucose, maltose, and maltotriose from starch, cyclodextrins, and maltooligosaccharides (G3-G7). The amylase showed remarkable glucose tolerance up to 1 M, but was more sensitive to inhibition by maltose. The deduced protein primary structure from the putative gene revealed that the enzyme shared moderate homology between alpha-amylases from Aspergilli and Lipomyces sp. This thermotolerant, glucose tolerant maltooligosaccharide-forming alpha-amylase is potent for biotechnological application.  相似文献   

18.
Aims: We performed an analysis of maltotriose utilization by 52 Saccharomyces yeast strains able to ferment maltose efficiently and correlated the observed phenotypes with differences in the copy number of genes possibly involved in maltotriose utilization by yeast cells. Methods and Results: The analysis of maltose and maltotriose utilization by laboratory and industrial strains of the species Saccharomyces cerevisiae and Saccharomyces pastorianus (a natural S. cerevisiae/Saccharomyces bayanus hybrid) was carried out using microscale liquid cultivation, as well as in aerobic batch cultures. All strains utilize maltose efficiently as a carbon source, but three different phenotypes were observed for maltotriose utilization: efficient growth, slow/delayed growth and no growth. Through microarray karyotyping and pulsed‐field gel electrophoresis blots, we analysed the copy number and localization of several maltose‐related genes in selected S. cerevisiae strains. While most strains lacked the MPH2 and MPH3 transporter genes, almost all strains analysed had the AGT1 gene and increased copy number of MALx1 permeases. Conclusions: Our results showed that S. pastorianus yeast strains utilized maltotriose more efficiently than S. cerevisiae strains and highlighted the importance of the AGT1 gene for efficient maltotriose utilization by S. cerevisiae yeasts. Significance and Impact of the Study: Our results revealed new maltotriose utilization phenotypes, contributing to a better understanding of the metabolism of this carbon source for improved fermentation by Saccharomyces yeasts.  相似文献   

19.
One membrane-bound alpha-glucosidase and two soluble alpha-glucosidases were isolated from homogenates of the hind-midgut, the main digestive region in Musca domestica larvae. The membrane-bound alpha-glucosidase and the low-Mr soluble alpha-glucosidase hydrolyze maltopentaose better than maltose, maltotriose, and maltotetraose, the reverse being true for the high-Mr soluble alpha-glucosidase. A membrane-bound glucoamylase previously described in Musca domestica midgut was shown by gradient centrifugation and dialysis against EDTA to result from the combined action of an amylase and an alpha-glucosidase. The determination of amylase, alpha-glucosidases, soluble and membrane-bound carboxypeptidase A, membrane-bound aminopeptidase and dipeptidase along the tissue and luminal contents of the hind-midgut is described. The data support a proposal concerned with how starch and protein are digested in Musca domestica larval hind-midguts and where and how midgut glycosidases and peptidases are secreted.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号