首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The effect of glucose administration was studied on its utilization during exercise carried out in the hours 500-700, 1100-1300, 1700-1900, 2300-100. The control group comprised animals at rest which had one or two glucose loads. Circadian variability of blood glucose level was observed in response to glycaemic stimulation in control animals. In the animals during exercise the circadian changes of glucose level depended on the time after glucose administration and the duration of exercise. Glucose utilization during exercise was not identical at various times of the 24-hour period. The greatest fall of blood glucose was observed at 1800 after one as well as after two glucose loads. Glucose administration after one hour of exercise prevented hypoglycaemia development.  相似文献   

2.
The effect of heat stress on circulation in an exercising leg was determined using one-legged knee extension and two-legged bicycle exercise, both seated and upright. Subjects exercised for three successive 25-min periods wearing a water-perfused suit: control [CT, mean skin temperature (Tsk) = 35 degrees C], hot (H, Tsk = 38 degrees C), and cold (C, Tsk = 31 degrees C). During the heating period, esophageal temperature increased to a maximum of 37.91, 39.35, and 39.05 degrees C in the three types of exercise, respectively. There were no significant changes in pulmonary O2 uptake (VO2) throughout the entire exercise period with either one or two legs. Leg blood flow (LBF), measured in the femoral vein of one leg by thermodilution, remained unchanged between CT, H, and C periods. Venous plasma lactate concentration gradually declined over time, and no trend for an increased lactate release during the heating period was found. Similarly, femoral arteriovenous O2 difference and leg VO2 remained unchanged between the three exercise periods. Although cardiac output (acetylene rebreathing) was not significantly higher during H, there was a tendency for an increase of 1 and 2 l/min in one- and two-legged exercise, respectively, which could account for part of the increase in total skin blood flow during heating (gauged by changes in forearm blood flow). Because LBF was not reduced during exercise and heat stress in these experiments, the additional increase in skin blood flow must have been met by redistribution of blood away from vascular beds other than active skeletal muscle.  相似文献   

3.
The aim of this study was to investigate whether, when muscle glycogen is reduced, a pre-exercise infusion of branched-chain amino acids (BCAA) modifies exercise performance or the metabolic and respiratory responses to incremental exercise. Six moderately trained volunteers took part in the following protocol on two occasions. On day 1, at 9 a.m. in the postabsorptive state, they performed a graded incremental exercise (increases of 35 W every 4 min) to exhaustion (Ex-1). A meal of 1,000 kcal (4,200 kJ; 60% protein, 40% fat) was consumed at 12 p.m. No food was then allowed until the end of the experiment (20–21 h later). A 90-min period of exercise at alternating high and moderate intensities, designed to deplete muscle glycogen, was performed between 6 p.m. and 7.30 p.m. The morning after (day 2), the subjects randomly received either a mixed solution of BCAA (260 mg × kg–1 × h–1 for 70 min), or saline. They then repeated the graded incremental exercise to exhaustion (Ex-2). Metabolic and respiratory measurements suggested a muscle glycogen-depleted state had been achieved. No significant differences were observed in total work performed, maximal oxygen uptake or plasma ammonia, alanine, and blood pyruvate concentrations in the two treatments. After BCAA infusion, higher blood lactate concentrations were observed at maximal power output in comparison with those during saline [BCAA 4.97 (SEM 0.41) mmol × l–1, Saline 3.88 (SEM 0.47) mmol × l–1,P < 0.05]. In summary, in conditions of reduced muscle glycogen content, after a short period of fasting, BCAA infusion had no significant effect on the total work that could be performed during a graded incremental exercise.  相似文献   

4.
Mitochondrial apoptosis and apoptotic signaling modulations by aerobic training were studied in cardiac and skeletal muscles of obese Zucker rats (OZR), a rodent model of metabolic syndrome. Comparisons were made between left ventricle, soleus, and gastrocnemius muscles from OZR (n = 16) and aged-matched lean Zucker rats (LZR; n = 16) that were untrained (n = 8) or aerobically trained on a treadmill for 9 wk (n = 8). Cardiac Bcl-2 protein expression levels were approximately 50% lower in the OZR compared with the LZR, with no difference in either of the skeletal muscles. Bax protein expression levels were similar in skeletal muscles of the OZR compared with the LZR. Furthermore, mitochondrial apoptotic signaling was not different in skeletal muscles of OZR and LZR groups. However, there was an approximate sevenfold increase in the Bax protein accumulation in the myocardial mitochondrial-rich protein fraction of the OZR compared with the LZR. Additionally, there was an increase in cytosolic cytochrome c released from the mitochondria, caspase-9 and caspase-3 activity, with a corresponding elevation in DNA fragmentation in the cardiac muscles of the OZR compared with the LZR. Exercise training reduced cardiac Bax protein levels, the mitochondrial localization of Bax, cytosolic cytochrome c, caspase activity, and DNA fragmentation in cardiac muscles of the OZR after exercise, with no change in the skeletal muscles. These data show that mitochondrial apoptosis is elevated in the cardiac but not skeletal muscles of the OZR, but aerobic exercise training was effective in reducing cardiac mitochondrial apoptotic signaling.  相似文献   

5.
Zinc status in plasma of obese individuals during glucose administration   总被引:1,自引:0,他引:1  
To know whether plasma zinc status is altered under acute hyperglycemic state, the interrelationships among plasma glucose, insulin, and zinc concentrations during oral glucose tolerance test (OGTT) in obese individuals and their lean controls were studied. Plasma glucose and insulin concentrations under fasting as well as those values in response to OGTT were significantly higher in obese individuals than those in lean controls. On the other hand, the obese had lower fasting plasma zinc concentrations compared to lean controls (13.5 vs 18.1 Μmol/L,p < 0.005). Under fasting, plasma zinc concentrations in overall individuals inversely correlated to their body mass index (BMI) (r = -0.516), plasma glucose (r = -0.620), and plasma insulin (r = -0.510). However, there were no significant changes in plasma zinc and copper values during OGTT in both obese individuals and lean controls. This study showed that plasma zinc values had no changes during OGTT in obese individuals. The results also indicated that lower fasting plasma zinc concentrations in obese individuals were not the short-term metabolic result.  相似文献   

6.
Substrate utilization after fructose, glucose, or water ingestion was examined in four male and four female subjects during three treadmill runs at approximately 75% of maximal O2 uptake. Each test was preceded by three days of a carbohydrate-rich diet. The runs were 30 min long and were spaced at least 1 wk apart. Exercise began 45 min after ingestion of 300 ml of randomly assigned 75 g fructose (F), 75 g glucose (G), or control (C). Muscle glycogen depletion determined by pre- and postexercise biopsies (gastrocnemius muscle) was significantly (P less than 0.05) less during the F trial than during C or G. Venous blood samples revealed a significant increase in serum glucose (P less than 0.05) and insulin (P less than 0.01) within 45 min after the G drink, followed by a decrease (P less than 0.05) in serum glucose during the first 15 min of exercise, changes not observed in the C or F trials. Respiratory exchange ratio was higher (P less than 0.05) during the G than C or F trials for the first 5 min of exercise and lower (P less than 0.05) during the C trial compared with G or F for the last 15 min of exercise. These data suggest that fructose ingested before 30 min of submaximal exercise maintains stable blood glucose and insulin concentrations, which may lead to the observed sparing of muscle glycogen.  相似文献   

7.
8.
9.
To investigate the hypothesis that the increase in plasma volume (PV) that typically occurs with training results in improved cardiovascular and thermal regulation during prolonged exercise, eight untrained males (V(O2)peak = 3.52 +/- 0.12 L x min(-1)) performed 90 min of cycle ergometry at 62% V(O2)peak before and after acute PV expansion. Subjects were infused with a PV-expanding solution (dextran (6%) or Pentaspan (10%)) equivalent to 6.7 mL x kg(-1) body mass (PVX) or acted as their own control (CON) in a randomized order. PVX resulted in a calculated 15.8% increase in resting PV, which relative to CON, was maintained throughout the exercise (P < 0.05). During PVX, heart rate was lower (P < 0.05) and stroke volume and cardiac output were higher (P < 0.05) during the exercise. Mean arterial pressure and total peripheral resistance, although altered by exercise (P < 0.05), were not different between the two conditions. Core temperature, which was progressively increased by the exercise (P < 0.01), was not affected by PVX. A similar decrease in body weight was observed between the conditions as a result of the exercise (P < 0.01). These results indicate that acute PVX alters cardiovascular performance without affecting the thermoregulatory response to prolonged cycle exercise.  相似文献   

10.
We have investigated the cause of defective glycogen synthesis in hepatocyte preparations enriched with cells from the periportal or perivenous zones obtained by the methods of Lindros & Penttila [Biochem. J. (1985) 228, 757-760] and of Quistorff [Biochem. J. (1985) 229, 221-226]. A modified procedure which yields hepatocytes capable of consistent rates of glycogen synthesis is described, and the rates of glucose and glycogen syntheses and of glycolysis in hepatocytes from the two zones are compared. Glycogen synthesis in cells was greatly impaired by very low concentrations (0.01-0.05 mg/ml) of digitonin, which had little effect on glucose and protein syntheses and Trypan Blue exclusion. Cells exposed to such low concentrations of digitonin lose all their synthetic capacity and ability to exclude Trypan Blue when incubated with EGTA, which does not affect cells not exposed to digitonin. With a modified procedure based on this phenomenon, our study reveals that hepatocyte preparations enriched with cells from the periportal zone synthesized glucose from lactate and alanine at rates twice those by cells from the perivenous zone, whereas the rate of glycogen synthesis from C3 precursors in periportal cells was 4 times that in the perivenous preparations. With substrates entering the pathway at the triose phosphate level, gluconeogenesis in periportal-cell preparations was 20% higher, and glycogen synthesis was twice that in perivenous preparations. Glycolysis was studied by the formation of 3HOH from [2-3H]glucose, the yield of lactate, and the conversion of [14C]glucose into [14C]lactate. In cell preparations from both zones glycolysis by all criteria was negligible at 10 mM-glucose, but was substantial at higher concentrations. However, there was no difference between the zones. We confirm that the capacities for glucose and glycogen syntheses in periportal cells are higher than in perivenous cells, but that at physiological glucose concentrations there is negligible glycolysis in liver parenchyma in both zones. The metabolic pattern in the perivenous cells is not glycolytic.  相似文献   

11.
《The Journal of cell biology》1994,125(6):1191-1200
In situ hybridization was used to examine chromosome behavior at meiotic prophase in the rad50S, hop1, rad50, and spo11 mutants of Saccharomyces cerevisiae, which are defective in chromosome synapsis and meiotic recombination. Painting of chromosomes I and III revealed that chromosome condensation and pairing are reduced in these mutants. However, there is some residual pairing in meiosis, suggesting that homologue recognition is independent of synaptonemal complex formation and recombination. Association of homologues was observed in the rad50, rad50S, and spo11 mutants, which are defective in the formation or processing of meiotic double-strand breaks. This indicates that double- strand breaks are not an essential component of the meiotic homology searching mechanism or that there exist additional or alternative mechanisms for locating homologues.  相似文献   

12.
Plasma glucose and muscle glycogen oxidation during prolonged exercise [75-min at 48 and 76% maximal O(2) uptake (Vo(2 max))] were measured in eight well-trained male subjects [Vo(2 max) = 4.50 l/min (SD 0.63)] using a simplified tracer technique in which a small amount of glucose highly enriched in (13)C was ingested: plasma glucose oxidation was computed from (13)C/(12)C in plasma glucose (which was stable beginning at minute 30 and minute 15 during exercise at 48 and 76% Vo(2 max), respectively) and (13)CO(2) production, and muscle glycogen oxidation was estimated by subtracting plasma glucose oxidation from total carbohydrate oxidation. Consistent data from the literature suggest that this small dose of exogenous glucose does not modify muscle glycogen oxidation and has little effect, if any, on plasma glucose oxidation. The percent contributions of plasma glucose and muscle glycogen oxidation to the energy yield at 48% Vo(2 max) [15.1% (SD 3.8) and 45.9% (SD 5.8)] and at 76% Vo(2 max) [15.4% (SD 3.6) and 59.8% (SD 9.2)] were well in line with data previously reported for similar work loads and exercise durations using conventional tracer techniques. The significant reduction in glycogen concentration measured from pre- and postexercise vastus lateralis muscle biopsies paralleled muscle glycogen oxidation calculated using the tracer technique and was larger at 76% than at 48% Vo(2 max). However, the correlation coefficients between these two estimates of muscle glycogen utilization were not different from zero at each of the two work loads. The simplified tracer technique used in the present experiment appears to be a valid alternative approach to the traditional tracer techniques for computing plasma glucose and muscle glycogen oxidation during prolonged exercise.  相似文献   

13.
Several studies suggest that exercise is associated with elevated oxidative stress which diminishes NO bioavailability. The aim of the present study was to investigate a potential link between NO synthesis and bioavailability and oxidative stress in the circulation of subjects performing high-intensive endurance exercise. Twenty-two male healthy subjects cycled at 80% of their maximal workload. Cubital venous blood was taken before, during and after exercise, and heparinized plasma was generated. Plasma concentrations of nitrite and nitrate were quantified by GC–MS and of the oxidative stress biomarker 15(S)-8-iso-PGF by GC–MS/MS. pH and pCO2 fell and HbO2 increased upon exercise. The duration of the 80% phase (d80) was 740 ± 210 s. Subjects cycled at 89.2 ± 3.3% of their peak oxygen uptake. Plasma concentration of nitrite (P < 0.01) and 15(S)-8-iso-PGF (P < 0.05) decreased significantly during exercise. At the end of exercise, plasma nitrite concentration correlated positively with d80 and performed work (w80) (each P < 0.05). Changes in nitrate concentration also correlated positively with d80 (P < 0.05) and w80/kg (P < 0.01). These findings provide evidence of a favorable effect of nitrite on high-intensive endurance exercise. The lack of association between 15(S)-8-iso-PGF and NO bioavailability (nitrite concentration) and NO biosynthesis (nitrate concentration) suggest that oxidative stress, notably lipid peroxidation, is not linked to the l-arginine/NO pathway in healthy male subjects being on endurance exercise.  相似文献   

14.
Zinc is an essential micronutrient and its deficiency relates to many diseases like diabetes mellitus. Although zinc deficiency has become prevalent in many countries, this subject has not yet been studied in Taiwan. The present study was designed to investigate whether healthy elderly Taiwanese have reduced circulating zinc concentrations. Forty-three men and ninety women whose ages were >60 yr were recruited. Moreover, 31 middle-aged (30–40 yr) adults were also included in this study. The results showed that most of the elderly adults had normal plasma zinc values and suggested that they should not have any zinc deficiency. However, we also found that the middle-aged adults had relative hypozincemia, which might deserve further study.  相似文献   

15.
The female sexhormone 17-estradiol (E2) has been shown to increaselipid and decrease carbohydrate utilization in animals. Weadministrated oral E2 and placebo (randomized, doubleblind, crossover) to eight human male subjects for 8 days (~3 mg/day) and measured respiratory variables, plasma substrates, hormones (E2, testosterone, leptin, cortisol, insulin, andcatecholamines), and substrate utilization during 90 min of enduranceexercise. [6,6-2H]glucose and[1,1,2,3,3-2H]glycerol tracers were used to calculatesubstrate flux. E2 administration increased serumE2 (0.22 to 2.44 nmol/l, P < 0.05) anddecreased serum testosterone (19.4 to 11.5 nmol/l, P < 0.05) concentrations, yet there were no treatment effects on any of theother hormones. Glucose rates of appearance (Ra) anddisappearance (Rd) were lower, and glycerolRa-to-Rd ratio was not affected byE2 administration. O2 uptake, CO2production, and respiratory exchange ratio were not affected byE2; however, there was a decrease in heart rate (P < 0.05). Plasma lactate and glycerol wereunaffected by E2; however, glucose was significantly higher(P < 0.05) during exercise after E2administration. We concluded that short-term oral E2 administration decreased glucose Ra and Rd,maintained plasma glucose homeostasis, but had no effect on substrateoxidation during exercise in men.

  相似文献   

16.
The resting content and use of myocellular triacylglycerol (MCTG) during 90 min of submaximal exercise [60% of peak oxygen uptake (VO(2 peak))] were studied in 21 eumenorrheic female and 21 male subjects at different training levels [untrained (UT), moderately trained (MT), and endurance trained (END)]. Males and females were matched according to their VO(2 peak) expressed relative to lean body mass, physical activity level, and training history. All subjects ingested the same controlled diet for 8 days, and all females were tested in the midfollicular phase of the menstrual cycle. Resting MCTG, measured with the muscle biopsy technique, averaged 48.4 +/- 4.2, 48.5 +/- 8.4, and 52.2 +/- 5.8 mmol/kg dry wt in UT, MT, and END females, respectively, and 34.1 +/- 4.9, 31.6 +/- 3.3, and 38.4 +/- 3.0 mmol/kg dry wt in UT, MT, and END males, respectively (P < 0.001, females vs. males in all groups). Exercise decreased MCTG content in the female subjects by an average of 25%, regardless of training status, whereas in the male groups MCTG content was unaffected by exercise. The arterial plasma insulin concentration was higher (P < 0.05) and the arterial plasma epinephrine concentration was lower (P < 0.05) in the females than in the males at rest and during exercise. MCTG use was correlated to the resting concentration of MCTG (P < 0.001). We conclude that resting content and use of MCTG during exercise are related to gender and furthermore are independent of training status.  相似文献   

17.
This study examined the effect of epinephrine on glucose disposal during moderate exercise when glycogenolytic flux was limited by low preexercise skeletal muscle glycogen availability. Six male subjects cycled for 40 min at 59 +/- 1% peak pulmonary O2 uptake on two occasions, either without (CON) or with (EPI) epinephrine infusion starting after 20 min of exercise. On the day before each experimental trial, subjects completed fatiguing exercise and then maintained a low carbohydrate diet to lower muscle glycogen. Muscle samples were obtained after 20 and 40 min of exercise, and glucose kinetics were measured using [6,6-2H]glucose. Exercise increased plasma epinephrine above resting concentrations in both trials, and plasma epinephrine was higher (P < 0.05) during the final 20 min in EPI compared with CON. Muscle glycogen levels were low after 20 min of exercise (CON, 117 +/- 25; EPI, 122 +/- 20 mmol/kg dry matter), and net muscle glycogen breakdown and muscle glucose 6-phosphate levels during the subsequent 20 min of exercise were unaffected by epinephrine infusion. Plasma glucose increased with epinephrine infusion (i.e., 20-40 min), and this was due to a decrease in glucose disposal (R(d)) (40 min: CON, 33.8 +/- 3; EPI, 20.9 +/- 4.9 micromol. kg(-1). min(-1), P < 0.05), because the exercise-induced rise in glucose rate of appearance was similar in the trials. These results show that glucose R(d) during exercise is reduced by elevated plasma epinephrine, even when muscle glycogen availability and utilization are low. This suggests that the effect of epinephrine does not appear to be mediated by increased glucose 6-phosphate, secondary to enhanced muscle glycogenolysis, but may be linked to a direct effect of epinephrine on sarcolemmal glucose transport.  相似文献   

18.
19.
Subjects with Type 2 diabetes without cardiovascular disease have a reduced exercise capacity compared with nondiabetic subjects. However, the mechanisms responsible for this phenomenon are unknown. The purpose of this study was to evaluate the impact of exercise systolic blood pressure (SBP) response on diverse exercise tolerance parameters in Type 2 diabetic subjects. Twenty-eight sedentary men with Type 2 diabetes were recruited for this study. Subjects were treated with oral hypoglycemic agents and/or diet. Evaluation of glycemic control and peak exercise capacity were performed for each subject. The subjects were divided into two groups according to the median value of peak SBP (210 mmHg) measured in each subject. We observed a 13, 13, and 16% reduction in the relative peak oxygen uptake (V(O2 peak)), absolute V(O2 peak), and peak work rate in the low- compared with the high-peak SBP group [26.95 (SD 5.35) vs. 30.96 (SD 3.61) ml.kg(-1).min(-1), 2.5 (SD 0.4) vs. 2.8 (SD 0.6) l/min, and 169 (SD 34) vs. 202 (SD 32) W; all P < 0.05]. After adjusting for age, relative V(O2 peak) was still significantly different (P < 0.05). There were similar peak respiratory exchange ratio (RER) [1.20 (SD 0.08) vs. 1.16 (SD 0.07); P = 0.24] and peak heart rate [160 (SD 20) vs. 169 (SD 15) beats/min; P = 0.18] between the low- compared with the high-SBP group. No difference in glycemic control was observed between the two groups. The results reported in this study suggest that in subjects with Type 2 diabetes without cardiovascular disease, an elevated exercise SBP is not associated with reduced exercise capacity and its modulation is probably not related to glycemic control.  相似文献   

20.
The objective of this study was to evaluate the role of right ventricular hypertrophy on developed tension (F(dev)) and contractile reserve of rat papillary muscle by using a model of monocrotaline (Mct)-induced pulmonary hypertension. Calcium handling and the influence of bicarbonate (HCO(3)(-)) were also addressed with the use of two different buffers (HCO(3)(-) and HEPES). Wistar rats were injected with either Mct (40 mg/kg sc) or vehicle control (Con). Isometrically contracting right ventricular papillary muscles were studied at 80% of the length of maximal developed force. Contractile reserve (1 - F(dev)/F(max)) was calculated from F(dev) and maximal tension (F(max)). Calcium recirculation was determined with postextrasystolic potentiation. Both groups of muscles were superfused with either HCO(3)(-) (Con-B and Mct-B, both n = 6) or HEPES (Con-H and Mct-H, both n = 6) buffer. With hypertrophy, contractions were slower but F(dev) was not changed. However, F(max) was decreased (P < 0.05). With HCO(3)(-), F(max) decreased from 23.8 +/- 6.5 mN.mm(-2) in Con-B, to 13.7 +/- 3.3 mN.mm(-2) in Mct-B. With HEPES, it decreased from 16.3 +/- 3.5 mN.mm(-2) (n = 6, Con-H) to 8.3 +/- 1.6 mN.mm(-2) (Mct-H). Contractile reserve during hypertrophy was therefore also decreased (P < 0.05). With HCO(3)(-), it decreased from 0.73 +/- 0.03 (Con-B) to 0.55 +/- 0.04 (Mct-B). With HEPES, it decreased (P < 0.001) from 0.64 +/- 0.07 (Con-H) to 0.19 +/- 0.06 (Mct-H). The recirculation fraction decreased (P < 0.05) from 0.59 +/- 0.04 in Con-B to 0.44 +/- 0.04 in Mct-B. We conclude that contractile reserve and recirculation fraction are impaired during hypertrophy, with a stronger effect under HEPES than HCO(3)(-) superfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号