首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platelet activation by collagen depends principally on two receptors, alpha(2)beta(1) integrin (GPIa-IIa) and GPVI. During this activation, the nonreceptor protein tyrosine kinase pp72(syk) is rapidly phosphorylated, but the precise contribution of alpha(2)beta(1) integrin and GPVI to signaling for this phosphorylation is not clear. We have recently found that proteolysis of platelet alpha(2)beta(1) integrin by the snake venom metalloproteinase, jararhagin, results in inhibition of collagen-induced platelet aggregation and pp72(syk) phosphorylation. In order to verify whether the treatment of platelets with jararhagin had any effect on GPVI signaling, in this study we stimulated platelets treated with either jararhagin or anti-alpha(2)beta(1) antibody with two GPVI agonists, an antibody to GPVI and convulxin. Platelet shape change and phosphorylation of pp72(syk) by both GPVI agonists was preserved, as was the structure and function of GPVI shown by (125)I-labeled convulxin binding to immunoprecipitated GPVI from jararhagin-treated platelets. In contrast, defective platelet aggregation in response to GPVI agonists occurred in both jararhagin-treated and alpha(2)beta(1)-blocked platelets. This apparent cosignaling role of alpha(2)beta(1) integrin for platelet aggregation suggests the possibility of a topographical association of this integrin with GPVI. We found that both platelet alpha(2)beta(1) integrin and GPVI coimmunoprecipitated with alpha(IIb)beta(3) integrin. Since platelet aggregation requires activation of alpha(IIb)beta(3) integrin, defective aggregation in the absence of alpha(2)beta(1) suggests that this receptor may provide a signaling link between GPVI and alpha(IIb)beta(3). Our study therefore demonstrates that platelet signaling leading to pp72(syk) phosphorylation initiated with GPVI engagement by either convulxin or GPVI antibody does not depend on alpha(2)beta(1) integrin. However, alpha(IIb)beta(3) integrin may, in this model, require functional alpha(2)beta(1) integrin for its activation.  相似文献   

2.
The interaction of platelet membrane glycoprotein VI (GPVI) with collagen can initiate (patho)physiological thrombus formation. The viper venom C-type lectin family proteins convulxin and alboaggregin-A activate platelets by interacting with GPVI. In this study, we isolated from white-lipped tree viper (Trimeresurus albolabris) venom, alborhagin, which is functionally related to convulxin because it activates platelets but is structurally different and related to venom metalloproteinases. Alborhagin-induced platelet aggregation (EC50, <7.5 microg/ml) was inhibitable by an anti-alphaIIbbeta3 antibody, CRC64, and the Src family kinase inhibitor PP1, suggesting that alborhagin activates platelets, leading to alphaIIbbeta3-dependent aggregation. Additional evidence suggested that, like convulxin, alborhagin activated platelets by a mechanism involving GPVI. First, alborhagin- and convulxin-treated platelets showed a similar tyrosine phosphorylation pattern, including a similar level of phospholipase Cgamma2 phosphorylation. Second, alborhagin induced GPVI-dependent responses in GPVI-transfected K562 and Jurkat cells. Third, alborhagin-dependent aggregation of mouse platelets was inhibited by the anti-GPVI monoclonal antibody JAQ1. Alborhagin had minimal effect on convulxin binding to GPVI-expressing cells, indicating that these venom proteins may recognize distinct binding sites. Characterization of alborhagin as a GPVI agonist that is structurally distinct from convulxin demonstrates the versatility of snake venom toxins and provides a novel probe for GPVI-dependent platelet activation.  相似文献   

3.
The glycoprotein VI (GPVI)-Fc receptor (FcR) gamma-chain complex, a key activatory receptor for collagen on platelet surface membranes, is constitutively associated with the Src family kinases Fyn and Lyn. Molecular cloning of GPVI has revealed the presence of a proline-rich domain in the sequence of GPVI cytoplasmic tail which has the consensus for interaction with the Src homology 3 (SH3) domains of Fyn and Lyn. A series of in vitro experiments demonstrated the ability of the SH3 domains of both Src kinases to bind the proline-rich domain of GPVI. Furthermore, depletion of the proline-rich domain in GPVI (Pro(-)-GPVI) prevented binding of Fyn and Lyn and markedly reduced phosphorylation of FcR gamma-chain in transiently transfected COS-7 cells, but did not affect the association of the gamma-chain with GPVI. Jurkat cells stably transfected with wild type GPVI show robust increases in tyrosine phosphorylation and intracellular Ca2+ in response to the snake venom convulxin that targets GPVI. Importantly, convulxin is not able to activate cells transfected with Pro(-)-GPVI, even though the association with the immunoreceptor tyrosine-based activation motif-containing chains is maintained. These findings demonstrate that the proline-rich domain of GPVI mediates the association with Fyn/Lyn via their SH3 domain and that this interaction initiates activation signals through GPVI.  相似文献   

4.
The snake venom toxin convulxin activates platelets through the collagen receptor glycoprotein VI (GPVI)/Fc receptor gamma-chain (FcR gamma-chain) complex leading to tyrosine phosphorylation and activation of the tyrosine Syk and phospholipase Cgamma2 (PLCgamma2). In the present study, we demonstrate that convulxin is a considerably more powerful agonist than collagen or the GPVI-selective collagen-related peptide (CRP). Confirmation that the response to convulxin is mediated solely via Syk was provided by studies on Syk-deficient platelets. The increase in phosphorylation of the FcR gamma-chain is associated with marked increases in tyrosine phosphorylation of downstream proteins including Syk, linker for activation of T cells (LAT), SLP-76, and PLCgamma2. The transmembrane adapter LAT coprecipitates with SLP-76 and PLCgamma2, as well as with a number of other adapter proteins, some of which have not been previously described in platelets, including Cbl, Grb2, Gads, and SKAP-HOM. Gads is constitutively associated with SLP-76 and is probably the protein bridging its association with LAT. There was no detectable association between Grb2 and SLP-76 in control or stimulated cells, suggesting that the interaction of LAT with Grb2 is present in a separate complex to that of LAT-Gads-SLP-76. These results show that the trimeric convulxin stimulates a much greater phosphorylation of the FcR gamma-chain and subsequent downstream responses relative to CRP and collagen, presumably because of its ability to cause a greater degree of cross-linking of GPVI. The adapter LAT appears to play a critical role in recruiting a number of other adapter proteins to the surface membrane in response to activation of GPVI, presumably at sites of glycolipid-enriched microdomains, enabling an organized signaling cascade that leads to platelet activation.  相似文献   

5.
It has recently been shown that the monoclonal antibody JAQ1 to murine glycoprotein VI (GPVI) can cause aggregation of mouse platelets upon antibody cross-linking and that collagen-induced platelet aggregation can be inhibited by preincubation of platelets with JAQ1 in the absence of cross-linking (Nieswandt, B., Bergmeier, W., Schulte, V., Rackebrandt, K., Gessner, J. E., and Zirngibl, H. (2000) J. Biol. Chem. 275, 23998-24002). In the present study, we have shown that cross-linking of GPVI by JAQ1 results in tyrosine phosphorylation of the same profile of proteins as that induced by collagen, including the Fc receptor (FcR) gamma-chain, Syk, LAT, SLP-76, and phospholipase C gamma 2. In contrast, platelet aggregation and tyrosine phosphorylation of these proteins were inhibited when mouse platelets were preincubated with JAQ1 in the absence of cross-linking and were subsequently stimulated with a collagen-related peptide (CRP) that is specific for GPVI and low concentrations of collagen. However, at higher concentrations of collagen, but not CRP, aggregation of platelets and tyrosine phosphorylation of the above proteins (except for the adapter LAT) is re-established despite the presence of JAQ1. These observations suggest that a second activatory binding site, which is distinct from the CRP binding site on GPVI on mouse platelets, is occupied in the presence of high concentrations of collagen. Although this could be a second site on GPVI that is activated by a novel motif within the collagen molecule, the absence of LAT phosphorylation in response to collagen in the presence of JAQ1 suggests that this is more likely to be caused by activation of a second receptor that is also coupled to the FcR gamma-chain. The possibility that this response is mediated by a receptor that is not coupled to FcR gamma-chain is excluded on the grounds that aggregation is absent in platelets from FcR gamma-chain-deficient mice.  相似文献   

6.
Convulxin (CVX), a potent platelet aggregating protein from the venom of the snake Crotalus durissus terrificus, is known to bind to the platelet collagen receptor, glycoprotein VI (GPVI). CVX binding to human platelets was investigated by flow cytometry, using fluorescein labeled convulxin (FITC-CVX). Scatchard analysis indicated high and low affinity binding sites with Kd values of 0.6 and 4 nM and Bmax values of 1200 and 2000 binding sites per platelet. FITC-CVX binding was inhibited by collagen related peptides (CRPs) comprising a repeated GPO sequence, namely GCO(GPO)(10)GCOGNH(2) and GKO(GPO)(10)GKOGNH(2), which also bind to receptor GPVI. These peptides (monomeric or cross-linked forms) gave a high affinity inhibition of 10-20% for concentrations between 10 ng/ml and 5 microg/ml, followed by a second phase of inhibition at concentrations greater than 5 microg/ml. It was shown also that the inhibition of FITC-CVX binding by CRPs was independent on the time of preincubation of platelets with CRPs, and the same percentage of inhibition was seen with various concentrations of convulxin. Confocal microscopy of the distribution of FITC-CVX binding sites on platelets showed an homogeneous distribution of FITC-CVX bound to GPVI, although some limited clustering may exist.  相似文献   

7.
The glycoprotein VI (GPVI).Fc receptor gamma-chain (FcRgamma-chain) complex is the major activation receptor for collagen on platelets. GPVI cross-linking mediates activation through tyrosine phosphorylation of an ITAM (immunoreceptor tyrosine-based activation motif) in the FcR gamma-chain by Src family kinases. It has been previously shown that a transmembrane arginine and the cytoplasmic domain of GPVI are required for association with the FcR gamma-chain in immortalized cell lines. In this study, we have delineated the regions in the GPVI tail that promote binding to FcR gamma-chain and mediate functional responses to the snake venom convulxin by reconstitution of mutant forms of GPVI in RBL-2H3 cells. Sequential truncation of the cytoplasmic tail of GPVI revealed a major role for the basic region and a minor role for the juxtamembrane six amino acids in the association with FcR gamma-chain and functional responses to convulxin. Analysis of selective deletions in the GPVI tail supported this conclusion. In addition, we show that the proline-rich domain is required for optimal Ca2+ release, whereas it is dispensable for FcR gamma-chain association.  相似文献   

8.
9.
Human platelets were activated either by glycoprotein (GP) Ia/IIa agonist (rhodocytin) or by a GPVI agonist (collagen-related peptide, CRP), and the intracellular signal transduction pathways were compared in the presence of various inhibitors. Rhodocytin isolated from Calloselasma rhodostoma venom was verified as a GPIa/IIa agonist, based on the inhibitory effects of three mAbs directed against GPIa. Platelet activation mediated by GPIa/IIa led to overt platelet aggregation, elevation of intracellular Ca2+, and tyrosine phosphorylation of several proteins, similar to that of GPVI. p72(syk) and phospholipase Cgamma2 (PLCgamma2) tyrosine phosphorylation were also observed with GPIa/IIa-mediated platelet aggregation, although they peaked slightly later than that of GPVI. In contrast to GPVI-mediated platelet activation, most of these phenomena induced by GPIa/IIa activation were markedly suppressed by acetylsalicylic acid (ASA) or cytochalasin D. These findings suggest that the requirements for thromboxane A2 (TXA2) production and actin polymerization, which are the characteristics of collagen-induced platelet activation, are derived from the GPIa/IIa-mediated signal transduction, but not from that of GPVI.  相似文献   

10.
In the present study we have investigated whether the collagen receptor alpha2beta1 (GPIa-IIa; GP, glycoprotein) regulates protein tyrosine phosphorylation in platelets directly through activation of tyrosine kinases or indirectly through modification of the response to GPVI. The interaction of collagen with alpha2beta1 was inhibited in two distinct ways, using the metalloprotease jararhagin, which cleaves the beta1 subunit, or the antibody P1E6 which competes with binding of collagen to the integrin. The two inhibitors caused a shift to the right in the collagen concentration response curves for protein tyrosine phosphorylation and platelet activation consistent with a causal relationship between the two events. There was no change in the overall pattern of tyrosine phosphorylation in response to high concentrations of collagen in the presence of alpha2beta1 blockade demonstrating that the integrin is not required for this event. In contrast, jararhagin and P1E6 had a small, almost negligible inhibitory effect against responses to the GPVI-selective agonist collagen-related peptide (CRP) and the G protein-coupled receptor agonist thrombin. Crosslinking of alpha2beta1 in solution or by adhesion to a monolayer using a variety of antibodies to either subunit of the integrin did not induce detectable protein tyrosine phosphorylation in whole cell lysates. The snake venom toxin trimucytin-stimulated a similar pattern of tyrosine phosphorylation to that induced by crosslinking of GPVI which was maintained in the presence of jararhagin. Trimucytin may therefore induce activation via GPVI rather than alpha2beta1 as previously thought. These observations show that the integrin alpha2beta1 is not required for regulation of tyrosine phosphorylation by collagen.  相似文献   

11.
Thrombus formation in hemostasis or thrombotic disease is initiated by adhesion of circulating platelets to damaged blood vessel walls. Exposed subendothelial collagen interacting with platelet glycoprotein (GP) VI leads to platelet activation and integrin alpha(IIb)beta(3)-mediated aggregation. We previously showed that ligand binding to GPVI also induces metalloproteinase-dependent shedding, generating an approximately 55-kDa soluble ectodomain fragment and an approximately 10-kDa membrane-associated remnant. Here, treatment of platelets with collagen or the GPVI-targeting rattlesnake toxin convulxin also induces rapid (10-30 s) formation of a high molecular weight GPVI complex (GPVIc) under nonreducing conditions, as detected by immunoblotting with anti-GPVI antibodies. The appearance of an approximately 20-kDa remnant detectable using a polyclonal antibody against the GPVI cytoplasmic tail under nonreducing, but not reducing, conditions after ectodomain shedding and nonreduced/reduced two-dimensional SDS-polyacrylamide gel analysis of biotinylated platelets confirmed that that GPVIc was a homodimer. Formation of disulfide-linked GPVIc was prolonged in the presence of metalloproteinase inhibitor GM6001 and was independent of GPVI signaling because it was unaffected by inhibitors of Src kinases, Syk, or phosphoinositide 3-kinase. To identify the thiol involved in disulfide bond formation, wild-type or mutant GPVI, where two available sulfhydryls (Cys-274 and Cys-338) were individually mutated to serine, was expressed in rat basophilic leukemia cells. Dimerization of wild-type and C274S GPVI, but not the C338S mutant, was observed after treating cells with convulxin. We conclude that (i) a subpopulation of GPVI forms a constitutive dimer on the platelet surface, facilitating rapid disulfide cross-linking, (ii) convulxin or other GPVI agonists induce disulfide-linked GPVI dimerization independent of GPVI signaling, and (iii) the penultimate residue of the GPVI cytoplasmic tail, Cys-338, mediates disulfide-dependent dimer formation.  相似文献   

12.
Collagen-induced platelet signaling is mediated by binding to the primary receptor glycoprotein VI (GPVI). Reactive oxygen species produced in response to collagen have been found to be responsible for the propagation of GPVI signaling pathways in platelets. Therefore, it has been suggested that antioxidant enzymes could down-regulate GPVI-stimulated platelet activation. Although the antioxidant enzyme peroxiredoxin II (PrxII) has emerged as having a role in negatively regulating signaling through various receptors by eliminating H2O2 generated upon receptor stimulation, the function of PrxII in collagen-stimulated platelets is not known. We tested the hypothesis that PrxII negatively regulates collagen-stimulated platelet activation. We analyzed PrxII-deficient murine platelets. PrxII deficiency enhanced GPVI-mediated platelet activation through the defective elimination of H2O2 and the impaired protection of SH2 domain-containing tyrosine phosphatase 2 (SHP-2) against oxidative inactivation, which resulted in increased tyrosine phosphorylation of key components for the GPVI signaling cascade, including Syk, Btk, and phospholipase Cγ2. Interestingly, PrxII-mediated antioxidative protection of SHP-2 appeared to occur in the lipid rafts. PrxII-deficient platelets exhibited increased adhesion and aggregation upon collagen stimulation. Furthermore, in vivo experiments demonstrated that PrxII deficiency facilitated platelet-dependent thrombus formation in injured carotid arteries. This study reveals that PrxII functions as a protective antioxidant enzyme against collagen-stimulated platelet activation and platelet-dependent thrombosis.  相似文献   

13.
Using the FDC-P1 cell line expressing the exogenous macrophage colony-stimulating factor (M-CSF) receptor, Fms, we have analyzed the role of a new mammalian DOS/Gab-related signaling protein, called Gab3, in macrophage cell development of the mouse. Gab3 contains an amino-terminal pleckstrin homology domain, multiple potential sites for tyrosine phosphorylation and SH2 domain binding, and two major polyproline motifs potentially interacting with SH3 domains. Among the growing family of Gab proteins, Gab3 exhibits a unique and overlapping pattern of expression in tissues of the mouse compared with Gab1 and Gab2. Gab3 is more restricted to the hematopoietic tissues such as spleen and thymus but is detectable at progressively lower levels within heart, kidney, uterus, and brain. Like Gab2, Gab3 is tyrosine phosphorylated after M-CSF receptor stimulation and associates transiently with the SH2 domain-containing proteins p85 and SHP2. Overexpression of exogenous Gab3 in FD-Fms cells dramatically accelerates macrophage differentiation upon M-CSF stimulation. Unlike Gab2, which shows a constant mRNA expression level after M-CSF stimulation, Gab3 expression is initially absent or low in abundance in FD cells expressing the wild-type Fms, but Gab3 mRNA levels are increased upon M-CSF stimulation. Moreover, M-CSF stimulation of FD-FmsY807F cells (which grow but do not differentiate) fails to increase Gab3 expression. These results suggest that Gab3 is important for macrophage differentiation and that differentiation requires the early phosphorylation of Gab2 followed by induction and subsequent phosphorylation of Gab3.  相似文献   

14.
Novel synthetic collagen fibers, poly(PHG) made by polycondensation of Pro-Hyp-Gly, spontaneously assume polymeric structure with molecular weights greater than 105. Its application for biomaterials has been explored, but that for a platelet agonist has not been investigated. Poly(PHG)-induced platelet aggregation independently of thromboxane A2 and integrin α2β1. Poly(PHG)-induced tyrosine phosphorylation of glycoprotein VI (GPVI)-related molecules and failed to activate GPVI/FcRγ-deficient platelets. Binding of GPVI to poly(PHG) was confirmed by a surface plasmon resonance spectroscopy, suggesting that poly(PHG) activates platelets through GPVI. Poly(PHG) is an useful research tool to investigate GPVI-mediated signals and a substitute for collagen in platelet functional assays.  相似文献   

15.
Phosphoinositide 3-kinase (PI3K) is a critical component of the signaling pathways that control the activation of platelets. Here we have examined the regulation of protein kinase B (PKB), a downstream effector of PI3K, by the platelet collagen receptor glycoprotein (GP) VI and thrombin receptors. Stimulation of platelets with collagen or convulxin (a selective GPVI agonist) resulted in PI3K-dependent, and aggregation independent, Ser(473) and Thr(308) phosphorylation of PKBalpha, which results in PKB activation. This was accompanied by translocation of PKB to cell membranes. The phosphoinositide-dependent kinase PDK1 is known to phosphorylate PKBalpha on Thr(308), although the identity of the kinase responsible for Ser(473) phosphorylation is less clear. One candidate that has been implicated as being responsible for Ser(473) phosphorylation, either directly or indirectly, is the integrin-linked kinase (ILK). In this study we have examined the interactions of PKB, PDK1, and ILK in resting and stimulated platelets. We demonstrate that in platelets PKB is physically associated with PDK1 and ILK. Furthermore, the association of PDK1 and ILK increases upon platelet stimulation. It would therefore appear that formation of a tertiary complex between PDK1, ILK, and PKB may be necessary for phosphorylation of PKB. These observations indicate that PKB participates in cell signaling downstream of the platelet collagen receptor GPVI. The role of PKB in collagen- and thrombin-stimulated platelets remains to be determined.  相似文献   

16.
17.
Tyrosine kinase pathways are known to play an important role in the activation of platelets. In particular, the GPVI and CLEC-2 receptors are known to activate Syk upon tyrosine phosphorylation of an immune tyrosine activation motif (ITAM) and hemITAM, respectively. However, unlike GPVI, the CLEC-2 receptor contains only one tyrosine motif in the intracellular domain. The mechanisms by which this receptor activates Syk are not completely understood. In this study, we identified a novel signaling mechanism in CLEC-2-mediated Syk activation. CLEC-2-mediated, but not GPVI-mediated, platelet activation and Syk phosphorylation were abolished by inhibition of PI3K, which demonstrates that PI3K regulates Syk downstream of CLEC-2. Ibrutinib, a Tec family kinase inhibitor, also completely abolished CLEC-2-mediated aggregation and Syk phosphorylation in human and murine platelets. Furthermore, embryos lacking both Btk and Tec exhibited cutaneous edema associated with blood-filled vessels in a typical lymphatic pattern similar to CLEC-2 or Syk-deficient embryos. Thus, our data show, for the first time, that PI3K and Tec family kinases play a crucial role in the regulation of platelet activation and Syk phosphorylation downstream of the CLEC-2 receptor.  相似文献   

18.
We have cloned the platelet collagen receptor glycoprotein (GP) VI from a human bone marrow cDNA library using rapid amplification of cDNA ends with platelet mRNA to complete the 5' end sequence. GPVI was isolated from platelets using affinity chromatography on the snake C-type lectin, convulxin, as a critical step. Internal peptide sequences were obtained, and degenerate primers were designed to amplify a fragment of the GPVI cDNA, which was then used as a probe to screen the library. Purified GPVI, as well as Fab fragments of polyclonal antibodies made against the receptor, inhibited collagen-induced platelet aggregation. The GPVI receptor cDNA has an open reading frame of 1017 base pairs coding for a protein of 339 amino acids including a putative 23-amino acid signal sequence and a 19-amino acid transmembrane domain between residues 247 and 265. GPVI belongs to the immunoglobulin superfamily, and its sequence is closely related to FcalphaR and to the natural killer receptors. Its extracellular chain has two Ig-C2-like domains formed by disulfide bridges. An arginine residue is found in position 3 of the transmembrane portion, which should permit association with Fcgamma and its immunoreceptor tyrosine-based activation motif via a salt bridge. With 51 amino acids, the cytoplasmic tail is relatively long and shows little homology to the C-terminal part of the other family members. The ability of the cloned GPVI cDNA to code for a functional platelet collagen receptor was demonstrated in the megakaryocytic cell line Dami. Dami cells transfected with GPVI cDNA mobilized intracellular Ca(2+) in response to collagen, unlike the nontransfected or mock transfected Dami cells, which do not respond to collagen.  相似文献   

19.
Intrinsically disordered proteins (IDPs) are an important class of proteins which lack tertiary structure elements. Their dynamic properties can depend on reversible post-translational modifications and the complex cellular milieu, which provides a crowded environment. Both influences the thermodynamic stability and folding of globular proteins as well as the conformational plasticity of IDPs. Here we investigate the intrinsically disordered C-terminal region (amino acids 613–694) of human Grb2-associated binding protein 1 (Gab1), which binds to the disease-relevant Src homolog region 2 (SH2) domain-containing protein tyrosine phosphatase SHP2 (PTPN11). This binding is mediated by phosphorylation at Tyr 627 and Tyr 659 in Gab1. We characterize induced structure in Gab1613–694 and binding to SHP2 by NMR, CD and ITC under non-crowding and crowding conditions, employing chemical and biological crowding agents and compare the results of the non-phosphorylated and tyrosine phosphorylated C-terminal Gab1 fragment. Our results show that under crowding conditions pre-structured motifs in two distinct regions of Gab1 are formed whereas phosphorylation has no impact on the dynamics and IDP character. These structured regions are identical to the binding regions towards SHP2. Therefore, biological crowders could induce some SHP2 binding capacity. Our results therefore indicate that high concentrations of macromolecules stabilize the preformed or excited binding state in the C-terminal Gab1 region and foster the binding to the SH2 tandem motif of SHP2, even in the absence of tyrosine phosphorylation.  相似文献   

20.
We have demonstrated that a unique megakaryocytic cell line UT‐7/TPO could respond to one of the primary platelet signals through GP (glycoprotein) VI and a secondary signal of the AA (arachidonic acid) cascade. Unlike other megakaryocytic cell lines, UT‐7/TPO was found to express GPVI and its associate signal molecule of FcRγ (Fc receptor γ chain). When UT‐7/TPO was stimulated with the GPVI agonist convulxin, the [Ca2+]i (intracellular Ca2+) was elevated in a convulxin concentration‐dependent manner, and [Ca2+]i elevation was blocked by pretreatment with the Src family kinase inhibitor PP2 and the phospholipase inhibitor U73122. These results strongly indicate that endogenously expressed GPVI signal molecules are functional in UT‐7/TPO. Concerning the AA cascade, the expression of COX (cyclooxygenase)‐1 and TX (thromboxane) synthase was observed, and this cell line was able to produce TX by exogenous AA, followed by [Ca2+]i elevation mediated through the TX receptor. It is worth noting that convulxin stimulation did not cause TX generation, even through the GPVI pathway and the AA cascade are functional in this cell line. As there are many reports that convulxin‐stimulated platelets failed to produce TX, it is suggested that UT‐7/TPO has the same property as the platelets in regards to convulxin stimulation. Thus, UT‐7/TPO is useful for the observation of both the GPVI pathway and AA cascade without requiring either the induction of differentiation or GPVI transfection. Furthermore, this cell line provides a new tool for research on platelet activation signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号