首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
D M Gray  R L Ratliff 《Biopolymers》1975,14(3):487-498
Ultraviolet circular dichroism spectra have been obtained in aqueous solutions in the presence and absence of ethanol for a synthetic DNA, poly[d(AC):d(GT)], a synthetic RNA, poly[r(AC):r(GU)], and two DNA:RNA hybrids, poly[d(AC):r(GU)] and poly[r(AC):d(GT)]. In the absence of ethanol, we find that the RNA and DNA spectra are dissimilar, while the spectra of the hybrids show differing degrees of similarity to that of the RNA. In the presence of 60–80% ethanol by weight, the spectra of the DNA and both hybrids become much closer to the spectrum of the RNA, which remains relatively unchanged. We interpret the results as indicating that DNA can undergo a change to an A-type conformation in the presence of ethanol and that the DNA:RNA hybrids are not wholly restricted to an RNA-like conformation in the absence of ethanol.  相似文献   

2.
Synthetic RNA poly[r(A-T)] has been synthesized and its CD spectral properties compared to those of poly[r(A-U)], poly[d(A-T)], and poly[d(A-U)] in various salt and ethanolic solutions. The CD spectra of poly[r(A-T)] in an aqueous buffer and of poly[d(A-T)] in 70.8% v/v ethanol are very similar, suggesting that they both adopt the same A conformation. On the other hand, the CD spectra of poly[r(A-T)] and of poly[r(A-U)] differ in aqueous, and even more so in ethanolic, solutions. We have recently observed a two-state salt-induced isomerization of poly[r(A-U)] into chiral condensates, perhaps of Z-RNA [M. Vorlícková, J. Kypr, and T. M. Jovin, (1988) Biopolymers 27, 351-354]. It is shown here that poly[r(A-T)] does not undergo this isomerization. Both the changes in secondary structure and tendency to aggregation are different for poly[r(A-T)] and poly[r(A-U)] in aqueous salt solutions. In most cases, the CD spectrum of poly[r(A-U)] shows little modification of its CD spectrum unless the polymer denatures or aggregates, whereas poly[r(A-T)] displays noncooperative alterations in its CD spectrum and a reduced tendency to aggregation. At high NaCl concentrations, poly[r(A-T)] and poly[r(A-U)] condense into psi(-) and psi(+) structures, respectively, indicating that the type of aggregation is dictated by the polynucleotide chemical structure and the corresponding differences in conformational properties.  相似文献   

3.
We have examined quantitatively stabilities of PNA/DNA hybrid duplexes with identical nearest-neighbor base pairs and compared stabilities between PNA/DNA and DNA/DNA. The average difference of stabilization energy of the short PNA/DNA was 0.9 kcal mol(-1), which suggests that the stability of the hybrids with identical nearest-neighbor base pairs can be predicted with the nearest-neighbor model as well as those of nucleic acid duplexes.  相似文献   

4.
The structural and dynamic properties of the water and ion first coordination shell of the r(A-U) and d(A-T) base-pairs embedded within the r(UpA)12 and d(TpA)12 duplexes are described on the basis of two 2.4 ns molecular dynamics simulations performed in a neutralizing aqueous environment with 0.25 M added KCl. The results are compared to previous molecular dynamics simulations of the r(CpG)12 and d(CpG)12 structures performed under similar conditions. It can be concluded that: (i) RNA helices are more rigid than DNA helices of identical sequence, as reflected by the fact that RNA duplexes keep their initial A-form shape while DNA duplexes adopt more sequence-specific shapes. (ii) Around these base-pairs, the water molecules occupy 21 to 22 well-defined hydration sites, some of which are partially occupied by potassium ions. (iii) These hydration sites are occupied by an average of 21.9, 21.0, 20.1, and 19.8 solvent molecules (water and ions) around the r(G=C), r(A-U), d(G=C), and d(A-T) pairs, respectively. (iv) From a dynamic point of view, the stability of the hydration shell is the strongest for the r(G=C) pairs and the weakest for the d(A-T) pairs. (v) For RNA, the observed long-lived hydration patterns are essentially non-sequence dependent and involve water bridges located in the deep groove and linking OR atoms of adjacent phosphate groups. Maximum lifetimes are close to 400 ps. (vi) In contrast, for DNA, long-lived hydration patterns are sequence dependent and located in the minor groove. For d(CpG)12, water bridges linking the (G)N3 and (C)O2 with the O4' atoms of adjacent nucleotides with 400 ps maximum lifetimes are characterized while no such bridges are observed for d(TpA)12. (vii) Potassium ions are observed to bind preferentially to deep/major groove atoms at RpY steps, essentially d(GpC), r(GpC), and r(ApU), by forming ion-bridges between electronegative atoms of adjacent base-pairs. On average, about half an ion is observed per base-pair. Positive ion-binding determinants are related to the proximity of two or more electronegative atoms. Negative binding determinants are associated with the electrostatic and steric hindrance due to the proximity of electropositive amino groups and neutral methyl groups. Potassium ions form only transient contacts with phosphate groups.  相似文献   

5.
In previous work, it was shown that poly [d(AC) · d(GT)] could be forced into the Z form by strong dehydrating conditions, provided EDTA was not present. Presumably multivalent impurities were also necessary for the transition. In order to gain control over the B to Z transition for this DNA, we carefully removed all divalent contaminants from the sample and asked the obvious question: What ions are necessary for the transition under dehydrating conditions? We systematically investigated the effect of various multivalent ions. The common contaminants Ca2+, Mg2+, and Fe3+ will not cause the transition, but Co2+ and Ni2+ facilitate the transition, undoubtedly because of their well-known propensity to bind to purine N7. Since the transition also depends on the synergistic dehydrating action of sodium perchlorate and ethanol, we include CD spectra for the independent variations of these two factors. In addition, vacuum-uv CD spectra for the A form and various B forms of poly [d (AC) · d (GT)] are presented for the first time.  相似文献   

6.
The solution structure and hydration of the chimeric duplex [d(CGC)r(aaa)d(TTTGCG)]2, in which the central hybrid segment is flanked by DNA duplexes at both ends, was determined using two-dimensional NMR, simulated annealing and restrained molecular dynamics. The solution structure of this chimeric duplex differs from the previously determined X-ray structure of the analogous B-DNA duplex [d(CGCAAATTTGCG)]2 as well as NMR structure of the analogous A-RNA duplex [r(cgcaaauuugcg)]2. Long-lived water molecules with correlation time τc longer than 0.3 ns were found close to the RNA adenine H2 and H1′ protons in the hybrid segment. A possible long-lived water molecule was also detected close to the methyl group of 7T in the RNA–DNA junction but not with the other two thymines (8T and 9T). This result correlates with the structural studies that only DNA residue 7T in the RNA–DNA junction adopts an O4′-endo sugar conformation, while the other DNA residues including 3C in the DNA–RNA junction, adopt C1′-exo or C2′-endo conformations. The exchange rates for RNA C2′-OH were found to be ~520 s–1. This slow exchange rate may be due to the narrow minor groove width of [d(CGC)r(aaa)d(TTTGCG)]2, which may trap the water molecules and restrict the dynamic motion of hydroxyl protons. The minor groove width of [d(CGC)r(aaa)d(TTTGCG)]2 is wider than its B-DNA analog but narrower than that of the A-RNA analog. It was further confirmed by its titration with the minor groove binding drug distamycin. A possible 2:1 binding mode was found by the titration experiments, suggesting that this chimeric duplex contains a wider minor groove than its B-DNA analog but still narrow enough to hold two distamycin molecules. These distinct structural features and hydration patterns of this chimeric duplex provide a molecular basis for further understanding the structure and recognition of DNA·RNA hybrid and chimeric duplexes.  相似文献   

7.
Abstract

CD spectra were used to compare the acid-induced structural transitions of poly[d(A)] and poly[d(C)] with those of poly[r(A)] and poly[r(C)], respectively. The types of base pairing were probably the same in the acid self-complexes of both A-containing polymers and in the acid self-complexes of both C-containing polymers. Similar base pairings were indicated by similarities in the difference CD spectra showing the changes during the first major acid- induced transitions of the polymers. Information from the CD spectra and pKa values of the transitions suggested that the transitions for the RNA polymers involved similar structural changes. The two DNA polymers were markedly different. Single-stranded poly [d(A)] was in the most stacked structure and had the lowest pKa for forming an acid self-complex. Single-stranded poly[d(C)] was in the least stacked structure and had the highest pKa for forming a protonated duplex.  相似文献   

8.
Flow linear dichroism is used to measure specific inclinations for each of the four bases in poly[d(AC)]·;poly[d(GT)] and poly[d(AG)]·poly[d(CT)] in both the B and A forms. For the B form in solution the bases are found to have a sizable inclination. Inclination is increased in the A form, as expected. In all cases the pyrimidines are more inclined than the purines. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
Derivatives of the oligomer [d(GGAATTCC)]2 with 5' (5'-P), 3' (3'-P) and both 5' and 3' (5',3'-P2) terminal phosphate groups have been synthesized and studied by temperature dependent UV and NMR spectroscopic methods. Thermodynamic studies of the helix to strand transition indicate that addition of 3' phosphate groups has very little effect on the delta G degree for helix formation at 37 degrees C while addition of 5' phosphate groups adds approximately -0.5 kcal/mole to the delta G degree for duplex formation. The helix stabilization by 5' phosphate groups occurs at salt concentrations of 0.1 M and above, and is primarily enthalpic in origin. Tm studies as a function of ionic strength also indicate that the oligomers fall into two groups with the parent and 3'-P derivatives being similar but less stable than the 5'-P and 5',3'-P2 derivatives. Imino proton and 31P NMR studies also divide the oligomers into these same two groups based on spectral comparisons and temperature induced chemical shift and linewidth changes. 31P NMR analysis suggests that addition of 5' phosphate groups results in a small change in phosphodiester torsional angles in the g,t to g,g direction, indicating improved base stacking at the 5' end of the modified oligomer. No such changes are seen at the 3' end of the oligomer on adding 3' phosphate groups.  相似文献   

10.
11.
We have measured the circular dichroism (CD) and absorption properties of poly[r(G-U)] and poly [d(G-T)] over a wide range of Na+ concentrations and temperatures. We find evidence for self-complexed forms of these polymers at lower temperatures and/or higher Na+ concentrations than generally needed for double-strand formation in other DNA and RNA polymers. These self-complexes could be composed of double-stranded regions with weak G·U or G·T base pairs.  相似文献   

12.
Crystal structure of a DNA.RNA hybrid, d(CTCCTCTTC).r(gaagagagag), with an adenine bulge in the polypurine RNA strand was determined at 2.3 A resolution. The structure was solved by the molecular replacement method and refined to a final R-factor of 19.9% (Rfree 22.2%). The hybrid duplex crystallized in the space group I222 with unit cell dimensions, a = 46.66 A, b = 47.61 A and c = 54.05 A, and adopts the A-form conformation. All RNA and DNA sugars are in the C3'-endo conformation, the glycosyl angles in anti conformation and the majority of the C4'-C5' torsion angles in g+ except two trans angles, in conformity with the C3'-endo rigid nucleotide hypothesis. The adenine bulge is looped out and it is also in the anti C3'-endo conformation. The bulge is involved in a base-triple (C.g)*a interaction with the end base-pair (C9.g10) in the minor groove of a symmetry-related molecule. The 2' hydroxyl group of g15 is hydrogen bonded to O2P and O5' of g17, skipping the bulged adenine a16 and stabilizing the sugar-phosphate backbone of the hybrid. The hydrogen bonding and the backbone conformation at the bulged adenine site is very similar to that found in the crystal structure of a protein-RNA complex.  相似文献   

13.
14.
The crystal structure of the RNA/DNA hybrid r(GAAGAGAAGC). d(GCTTCTCTTC) has been solved and refined at 2.5 A resolution. The refinement procedure converged at R = 0.181 for all reflections in the range 20.0-2.5 A. In the crystal, the RNA/DNA hybrid duplex has an A' conformation with all but one of the nucleotide sugar moieties adopting a C3'- endo (N) conformation. Both strands in the double helix adopt a global conformation close to the A-form and the width of the minor groove is typical of that found in the crystal structures of other A-form duplexes. However, differences are observed between the RNA and DNA strands that make up the hybrid at the local level. In the central portion of the duplex, the RNA strand has backbone alpha, beta and gamma torsion angles that alternate between the normal gauche -/ trans / gauche + conformation and an unusual trans / trans / trans conformation. Coupled with this so-called 'alpha/gamma flipping' of the backbone torsion angles, the distance between adjacent phosphorous atoms on the RNA strand systematically varies. Neither of these phenomena are observed on the DNA strand. The structure of the RNA/DNA hybrid presented here differs significantly from that found in solution for this and other sequences. Possible reasons for these differences and their implications for the current model of RNase H activity are discussed.  相似文献   

15.
The sodium dodecyl sulfate driven dissociation reactions of daunorubicin (1), mitoxantrone (2), ametantrone (3), and a related anthraquinone without hydroxyl groups on the ring or side chain (4) from calf thymus DNA, poly[d(G-C)]2, and poly[d(A-T)]2 have been investigated by stopped-flow kinetic methods. All four compounds exhibit biphasic dissociation reactions from their DNA complexes. Daunorubicin and mitoxantrone have similar dissociation rate constants that are lower than those for ametantrone and 4. The effect of temperature and ionic strength on both rate constants for each compound is similar. An analysis of the effects of salt on the two rate constants for daunorubicin and mitoxantrone suggests that both of these compounds bind to DNA through a mechanism that involves formation of an initial outside complex followed by intercalation. The daunorubicin dissociation results from both poly[d(G-C)]2 and poly[d(A-T)]2 can be fitted with a single exponential function, and the rate constants are quite close. The ametantrone and 4 polymer dissociation results can also be fitted with single exponential curves, but with these compounds the dissociation rate constants for the poly[d(G-C)]2 complexes are approximately 10 times lower than for the poly[d(A-T)]2 complexes. Mitoxantrone also has a much slower dissociation rate from poly[d(G-C)]2 than from poly[d(A-T)]2, but its dissociation from both polymers exhibits biphasic kinetics. Possible reasons for the biphasic behavior with the polymers, which is unique to mitoxantrone, are selective binding and dissociation from the alternating polymer intercalation sites and/or dual binding modes of the intercalator with both side chains in the same groove or with one side chain in each groove.  相似文献   

16.
The effect of several simple repeating DNA sequences--d(CG.GC)5, d(CA.GT)30, and d(A.T)60--on the nucleosomal organization of the SV40 minichromosome is analyzed. These three different sequences were cloned at the Hpa II site of SV40 (position 346) which occurs at the 3' border of the nucleosome-free SV40 control region. Our results show that neither the d(A.T)60 sequence nor the d(CG.GC)5 sequence appear to have any relevant effect on the nucleosomal organization of the region of the minichromosome surrounding the inserted repeated sequence. Both sequences are hypersensitive to micrococcal nuclease cleavage in the minichromosome, indicating that they are not organized into nucleosomes. On the other hand, the d(CA.GT)30 sequence is found organized as nucleosomes and causes the delocation of nucleosomes in the minichromosomal region close to the inserted repeated sequence.  相似文献   

17.
BackgroundTelomere elongation by telomerase gets inhibited by G-quadruplex DNA found in its guanine rich region. Stabilization of G-quadruplex DNA upon ligand binding has evolved as a promising strategy to target cancer cells in which telomerase is over expressed.MethodsInteraction of anti-leukemic alkaloid, coralyne, to tetrameric parallel [d(TTGGGGT)]4 (Ttel7), [d(TTAGGGT)]4 (Htel7) and monomeric anti-parallel [dGGGG(TTGGGG)3] (Ttel22) G-quadruplex DNA has been studied using Circular Dichroism (CD) spectroscopy. Titrations of coralyne with Ttel7 and Htel7 were monitored by 1H and 31P NMR spectroscopy. Solution structure of coralyne-Ttel7 complex was obtained by restrained Molecular Dynamics (rMD) simulations using distance restraints from 2D NOESY spectra. Thermal stabilization of DNA was determined by absorption, CD and 1H NMR.Results and conclusionsBinding of coralyne to Ttel7/Htel7 induces negative CD band at 315/300 nm. A significant upfield shift in all GNH, downfield shift in T2/T7 base protons and upfield shift (1.8 ppm) in coralyne protons indicates stacking interactions. 31P chemical shifts and NOE contacts of G3, G6, T2, T7 protons with methoxy protons reveal proximity of coralyne to T2pG3 and G6pT7 sites. Solution structure reveals stacking of coralyne at G6pT7 and T2pG3 steps with two methoxy groups of coralyne located in the grooves along with formation of a hydrogen bond. Binding stabilizes Ttel7/Htel7 by ~ 25–35 °C in 2:1 coralyne-Ttel7/Htel7 complex.General significanceThe present study is the first report on solution structure of coralyne-Ttel7 complex showing stacking of coralyne with terminal guanine tetrads leading to significant thermal stabilization, which may be responsible for telomerase inhibition.  相似文献   

18.
2D-NOE and 1H NMR chemical shift data obtained for the title oligonucleotides were compared with similar data previously reported [Broido et al. (1985) Eur. J. Biochem. 150, 117-128] for the unmodified "parent" structure, [d(GGAATTCC)]2. The spectroscopically detectable structural perturbations caused by replacement of phosphate oxygen with sulfur were mostly localized within the GsA moiety, and were greater for the Rp configuration wherein sulfur is oriented into the major groove of the B-helix. UV-derived Tm measurements gave the following order of stability for the duplexes in 0.4 M NaCl: unmodified (33.9 +/- 0.1 degrees C) approximately Sp-Sp (34.1 degrees C) greater than Rp-Rp (31.7 degrees C). The title compounds were prepared by a new and convenient synthetic route which utilized HPLC to separate the diastereomeric O-ethyl phosphorothioate precursors, (Rp)- and (Sp)-d[GG(S,Et)AATTCC], for subsequent de-ethylation by ammonia in water.  相似文献   

19.
 We report the sequences of 17 primer pairs of microsatellite loci, which we have cloned and sequenced from two genomic libraries of peach [Prunus persica (L) Batsch] ‘Redhaven’, enriched for AC/GT and AG/CT repeats respectively. For ten of these microsatellite loci we were able to demonstrate Mendelian inheritance in a segregating back-cross population; the remainder did not segregate. The polymorphism of the microsatellites was evaluated in a panel of ten peach genotypes, including true-to-type peaches, nectarines and one canning-peach. Fifteen microsatellites (88%) were polymorphic showing 2–4 alleles each. The mean heterozygosity, averaged over all loci, was 0.32 and significantly higher than that reported in the literature for isozymes and molecular markers, such as RFLPs and RAPDs. We have also assayed the cross-species transportability and found that ten microsatellite (59%) gave apparently correct amplification in all Prunus species surveyed, namely P. domestica (European plum), P. salicina (Japanese plum), P. armeniaca (apricot), P. dulcis (almond), P. persica var. vulgaris (peach), P. persica var. laevis (nectarine), P. avium (sweet cherry) and P. cerasus (sour cherry), with three of them also being amplified in Malus (apple). The remaining microsatellites gave less-extensive amplification. Because of their appreciable polymorphism and wide cross-species transportability, most of these new markers can be integrated into the linkage maps which are currently being constructed in peach, as well as in other stone fruit crops, such as almond, apricot, cherry and plum. Received: 3 September 1998 / Accepted: 28 November 1998  相似文献   

20.
Thermodynamic parameters of melting process (DeltaHm, Tm, DeltaTm) of calf thymus DNA, poly(dA)poly(dT) and poly(d(A-C)).poly(d(G-T)) were determined in the presence of various concentrations of TOEPyP(4) and its Zn complex. The investigated porphyrins caused serious stabilization of calf thymus DNA and poly poly(dA)poly(dT), but not poly(d(A-C))poly(d(G-T)). It was shown that TOEpyp(4) revealed GC specificity, it increased Tm of satellite fraction by 24 degrees C, but ZnTOEpyp(4), on the contrary, predominantly bound with AT-rich sites and increased DNA main stage Tm by 18 degrees C, and Tm of poly(dA)poly(dT) increased by 40 degrees C, in comparison with the same polymers without porphyrin. ZnTOEpyp(4) binds with DNA and poly(dA)poly(dT) in two modes--strong and weak ones. In the range of r from 0.005 to 0.08 both modes were fulfilled, and in the range of r from 0.165 to 0.25 only one mode--strong binding--took place. The weak binding is characterized with shifting of Tm by some grades, and for the strong binding Tm shifts by approximately 30-40 degrees C. Invariability of DeltaHm of DNA and poly(dA)poly(dT), and sharp increase of Tm in the range of r from 0.08 to 0.25 for thymus DNA and 0.01-0.2 for poly(dA)poly(dT) we interpret as entropic character of these complexes melting. It was suggested that this entropic character of melting is connected with forcing out of H2O molecules from AT sites by ZnTOEpyp(4) and with formation of outside stacking at the sites of binding. Four-fold decrease of calf thymus DNA melting range width DeltaTm caused by increase of added ZnTOEpyp(4) concentration is explained by rapprochement of AT and GC pairs thermal stability, and it is in agreement with a well-known dependence, according to which DeltaT approximately TGC-TAT for DNA obtained from higher organisms (L. V. Berestetskaya, M. D. Frank-Kamenetskii, and Yu. S. Lazurkin. Biopolymers 13, 193-205 (1974)). Poly (d(A-C))poly(d(G-T)) in the presence of ZnTOEpyp(4) gives only one mode of weak binding. The conclusion is that binding of ZnTOEpyp(4) with DNA depends on its nucleotide sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号