首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Although necrotic cells are known to induce inflammation in vivo, the underlying mechanism remains largely unexplored. In order to examine the mechanism, we used an inflammation model induced by injection of necrotic leukemic P388 cells into the peritoneal cavity in this study. The injection of necrotic cells induced the infiltration of neutrophils and subsequently that of monocytes/macrophages. In agreement with this, the injection also induced the production of KC and MIP-2, and subsequently that of MCP-1. Although the level of KC was higher than that of MIP-2, both anti-KC Ab and anti-MIP-2 Ab significantly inhibited the infiltration of neutrophils. Antibodies against CXCR2, a sole receptor for KC and MIP-2, almost completely inhibited the infiltration of neutrophils and monocytes/macrophages. Anti-MCP-1 Ab, on the other hand, inhibited the infiltration of monocytes/macrophages but not neutrophils. These results indicate that KC and MIP-2 play important roles in the infiltration of neutrophils into the site of injection of necrotic cells and that neutrophils may regulate monocyte/macrophage infiltration in our model.  相似文献   

2.
3.
We investigated early cellular responses induced by infection with Leishmania major in macrophages from resistant C57/BL6 mice. Infection increased production of reactive oxygen species by resident, but not inflammatory peritoneal macrophages. In addition, infection increased activation of stress-activated protein kinases/c-Jun N-terminal kinases (SAPK/JNK) in resident, but not in inflammatory peritoneal macrophages. Infection also increased expression of membrane and soluble FasL, but infected macrophages remained viable after 48 h. Infection increased secretion of cytokines/chemokines TNF-α, IL-6, TIMP-1, IL-1RA, G-CSF, TREM, KC, MIP-1α, MIP-1β, MCP-1, and MIP-2 in resident macrophages. Addition of antioxidants deferoxamine and N-acetylcysteine reduced ROS generation and JNK activation. Addition of antioxidants or JNK inhibitor SP600125 reduced secretion of KC. Furthermore, treatment with antioxidants or JNK inhibitor also reduced intracellular parasite replication. These results indicated that infection triggers a rapid cellular stress response in resident macrophages which induces proinflammatory signals, but is also involved in parasite survival and replication in host macrophages.  相似文献   

4.
Pulmonary ischemia-reperfusion (IR) injury entails acute activation of alveolar macrophages followed by neutrophil sequestration. Although proinflammatory cytokines and chemokines such as TNF-alpha and monocyte chemoattractant protein-1 (MCP-1) from macrophages are known to modulate acute IR injury, the contribution of alveolar epithelial cells to IR injury and their intercellular interactions with other cell types such as alveolar macrophages and neutrophils remain unclear. In this study, we tested the hypothesis that following IR, alveolar macrophage-produced TNF-alpha further induces alveolar epithelial cells to produce key chemokines that could then contribute to subsequent lung injury through the recruitment of neutrophils. Cultured RAW264.7 macrophages and MLE-12 alveolar epithelial cells were subjected to acute hypoxia-reoxygenation (H/R) as an in vitro model of pulmonary IR. H/R (3 h/1 h) significantly induced KC, MCP-1, macrophage inflammatory protein-2 (MIP-2), RANTES, and IL-6 (but not TNF-alpha) by MLE-12 cells, whereas H/R induced TNF-alpha, MCP-1, RANTES, MIP-1alpha, and MIP-2 (but not KC) by RAW264.7 cells. These results were confirmed using primary murine alveolar macrophages and primary alveolar type II cells. Importantly, using macrophage and epithelial coculture methods, the specific production of TNF-alpha by H/R-exposed RAW264.7 cells significantly induced proinflammatory cytokine/chemokine expression (KC, MCP-1, MIP-2, RANTES, and IL-6) by MLE-12 cells. Collectively, these results demonstrate that alveolar type II cells, in conjunction with alveolar macrophage-produced TNF-alpha, contribute to the initiation of acute pulmonary IR injury via a proinflammatory cascade. The release of key chemokines, such as KC and MIP-2, by activated type II cells may thus significantly contribute to neutrophil sequestration during IR injury.  相似文献   

5.
Chemokine amplification in mesangial cells.   总被引:5,自引:0,他引:5  
Mesangial cells are specialized cells of the renal glomerulus that share some properties of vascular smooth muscle cells and macrophages. They are implicated in the pathogenesis of many forms of nephritis. The murine CXC-chemokines macrophage inflammatory protein-2 (MIP-2) and KC induce migration of mouse mesangial cells. Mesangial cells also exhibit a unique chemokine feedback mechanism. Treatment with nanomolar concentrations of MIP-2 or KC markedly up-regulates monocyte chemoattractant protein-1 and RANTES expression in mesangial cells. Autoinduction of MIP-2 and KC mRNA was also noted. Low levels of MIP-1alpha, MIP-1beta, and IFN-gamma-inducible protein-10 were induced following treatment with higher doses of MIP-2 or KC. These effects are specific to mesangial cells, as MIP-2 or KC treatment of renal cortical epithelial cells or peritoneal macrophages failed to induce chemokine production. This cascade of chemokine interactions may contribute to renal infiltration and leukocyte activation. The abilities of MIP-2 or KC to stimulate their own synthesis may also contribute to the maintenance and chronic course of glomerular inflammation. The mesangial cell receptor for MIP-2 and/or KC is unknown but is not CXC-chemokine receptor-2.  相似文献   

6.
Host-derived chemoattractant factors are suggested to play crucial roles in leukocyte recruitment elicited by inflammatory stimuli in vitro and in vivo. However, in the case of acute bacterial infections, pathogen-derived chemoattractant factors are also present, and it has not yet been clarified how cross-talk between chemoattractant receptors orchestrates diapedesis of leukocytes in this context of complex chemoattractant arrays. To investigate the role of chemokine (host-derived) and formyl peptide (pathogen-derived) chemoattractants in leukocyte extravasation in life-threatening infectious diseases, we used a mouse model of pneumococcal pneumonia. We found an increase in mRNA expression of eight chemokines (RANTES, macrophage-inflammatory protein (MIP)-1alpha, MIP-1beta, MIP-2, IP-10, monocyte chemoattractant protein (MCP)-1, T cell activation 3, and KC) within the lungs during the course of infection. KC and MIP-2 protein expression closely preceded pulmonary neutrophil recruitment, whereas MCP-1 protein production coincided more closely than MIP-1alpha with the kinetics of macrophage infiltration. In situ hybridization of MCP-1 mRNA suggested that MCP-1 expression started at peribronchovascular regions and expanded to alveoli-facing epithelial cells and infiltrated macrophages. Interestingly, administration of a neutralizing Ab against MCP-1, RANTES, or MIP-1alpha alone did not prevent macrophage infiltration into infected alveoli, whereas combination of the three Abs significantly reduced macrophage infiltration without affecting neutrophil recruitment. The use of an antagonist to N-formyl peptides, N-t-Boc-Phe-D-Leu-Phe-D-Leu-Phe, reduced both macrophages and neutrophils significantly. These data demonstrate that a complex chemokine network is activated in response to pulmonary pneumococcal infection, and also suggest an important role for fMLP receptor in monocyte/macrophage recruitment in that model.  相似文献   

7.
The mechanistic relationships between initiating stimulus, cellular source and sequence of chemokine expression, and leukocyte recruitment during inflammation are not clear. To study these relationships in an acute inflammatory process, we challenged a murine air pouch with carrageenan. A time-dependent increase in TNF-alpha, monocyte chemottractant protein-1 (MCP-1), macrophage-inflammatory protein-1alpha (MIP-1alpha), RANTES, KC, and MIP-2 was found in the exudates preceding cell recruitment, but displaying different kinetic profiles. Air pouches generated for 2, 6, or 9 days before initiating inflammation demonstrated a proportional increase in the number of cells lining the cavities. Two hours after carrageenan stimulation, the synthesis of TNF-alpha and all chemokines but RANTES increased in proportion to the lining cellularity, although no differences in infiltrating leukocytes were found, suggesting that the early source of these mediators is resident cells. To assess the contribution of neutrophils to chemokine synthesis at later time points, we used neutropenic animals. Neutrophil depletion caused a decrease in TNF-alpha (51%), KC (37%), MIP-1alpha (30%), and RANTES (57%) levels and a 2-fold increase in monocytes 4 h after challenge. No effect on MIP-2 and MCP-1 levels was observed. The selective blockade of CXCR2 or CCR1 inhibited neutrophil recruitment by 74% and 54%, respectively, without a significant inhibition of monocytes. A differential effect on TNF-alpha and MCP-1 levels was observed after these treatments, indicating that the two receptors did not subserve a mere redundant chemotactic role. Overall, our results suggest that chemokines synthesized by resident cells play an important role in the evolution of the inflammatory response.  相似文献   

8.
In this study, we have examined the ability of chemokine receptor antagonists to prevent neutrophil extravasation in the mouse. Two murine CXC chemokines, macrophage-inflammatory protein (MIP)-2 and KC, stimulated the accumulation of leukocytes into s.c. air pouches, although MIP-2 was considerably more potent. The leukocyte infiltrate was almost exclusively neutrophilic in nature. A human CXC chemokine antagonist, growth-related oncogene (GRO)-alpha(8-73), inhibited calcium mobilization induced by MIP-2, but not by platelet-activating factor in leukocytes isolated from the bone marrow, indicating that this antagonist inhibits MIP-2 activity toward murine leukocytes. Pretreatment of mice with GROalpha(8-73) inhibited, in a dose-dependent manner, the MIP-2-induced influx of neutrophils to levels that were not significantly different from control values. Moreover, this antagonist was also effective in inhibiting the leukocyte recruitment induced by TNF-alpha, LPS, and IL-1beta. Leukocyte infiltration into the peritoneal cavity in response to MIP-2 was also inhibited by prior treatment of mice with GROalpha(8-73) or the analogue of platelet factor 4, PF4(9-70). The results of this study indicate 1) that the murine receptor for MIP-2 and KC, muCXCR2, plays a major role in neutrophil recruitment to s.c. tissue and the peritoneal cavity in response to proinflammatory agents and 2) that CXCR2 receptor antagonists prevent acute inflammation in vivo.  相似文献   

9.
TNF-alpha has numerous biological activities, including the induction of chemokine expression, and is involved in many gastric injuries. C-C chemokines [monocyte chemotactic protein (MCP)-1 and macrophage inflammatory protein (MIP)-1alpha] and C-X-C chemokines [MIP-2 and cytokine-induced neutrophil chemoattractant (CINC)-2alpha] mediate chemotaxis of monocytes and neutrophils, respectively. We examined the roles of TNF-alpha and dynamics of chemokine expression in gastric ulceration including ulcer recurrence and indomethacin-induced injury. Rats with healed chronic gastric ulcers received intraperitoneal TNF-alpha to induce ulcer recurrence. Some rats were given neutralizing antibodies against neutrophils or MCP-1 together with TNF-alpha. In a separate experiment, rats were orally administered 20 mg/kg indomethacin with or without pretreatment with pentoxifylline (an inhibitor of TNF-alpha synthesis) or anti-MCP-1 antibody. TNF-alpha (1 microg/kg) induced gastric ulcer recurrence after 48 h, which was completely prevented by anti-neutrophil antibody. TNF-alpha increased the number of macrophages and MCP-1 mRNA expression in scarred mucosa from 4 h, whereas it increased MPO activities (marker of neutrophil infiltration) and mRNA expression of MIP-2 and CINC-2alpha from 24 h. Anti-MCP-1 antibody inhibited leukocyte infiltration with reduction of the levels of C-X-C chemokines and prevented ulcer recurrence. Indomethacin treatment increased TNF-alpha/chemokine mRNA expression from 30 min and induced macroscopic erosions after 4 h. Pentoxifylline inhibited the indomethacin-induced gastric injury with reduction of neutrophil infiltration and expression of chemokine (MCP-1, MIP-2, and CINC-2alpha). Anti-MCP-1 antibody also inhibited the injury and these inflammatory responses but did not affect TNF-alpha mRNA expression. In conclusion, increased MCP-1 triggered by TNF-alpha may play a key role in gastric ulceration by regulating leukocyte recruitment and chemokine expression.  相似文献   

10.
The host response to Gram-negative LPS is characterized by an influx of inflammatory cells into host tissues, which is mediated, in part, by localized production of chemokines. The expression and function of chemokines in vivo appears to be highly selective, though the molecular mechanisms responsible are not well understood. All CXC (IFN-gamma-inducible protein (IP-10), macrophage inflammatory protein (MIP)-2, and KC) and CC (JE/monocyte chemoattractant protein (MCP)-1, MCP-5, MIP-1alpha, MIP-1beta, and RANTES) chemokine genes evaluated were sensitive to stimulation by LPS in vitro and in vivo. While IL-10 suppressed the expression of all LPS-induced chemokine genes evaluated in vitro, treatment with IFN-gamma selectively induced IP-10 and MCP-5 mRNAs, but inhibited LPS-induced MIP-2, KC, JE/MCP-1, MIP-1alpha, and MIP-1beta mRNA and/or protein. Like the response to IFN-gamma, LPS-mediated induction of IP-10 and MCP-5 was Stat1 dependent. Interestingly, only the IFN-gamma-mediated suppression of LPS-induced KC gene expression was IFN regulatory factor-2 dependent. Treatment of mice with LPS in vivo also induced high levels of chemokine mRNA in the liver and lung, with a concomitant increase in circulating protein. Hepatic expression of MIP-1alpha, MIP-1beta, RANTES, and MCP-5 mRNAs were dramatically reduced in Kupffer cell-depleted mice, while IP-10, KC, MIP-2, and MCP-1 were unaffected or enhanced. These findings indicate that selective regulation of chemokine expression in vivo may result from differential response of macrophages to pro- and antiinflammatory stimuli and to cell type-specific patterns of stimulus sensitivity. Moreover, the data suggest that individual chemokine genes are differentially regulated in response to LPS, suggesting unique roles during the sepsis cascade.  相似文献   

11.
12.
Cecal ligation and puncture (CLP) caused septic peritonitis in wild-type (WT) mice, with approximately 33% mortality within 7 days after the procedure. Concomitantly, the protein level of intraperitoneal CX3CL1/fractalkine was increased, with infiltration by CX3CR1-expressing macrophages into the peritoneum. CLP induced 75% mortality in CX3CR1-deficient (CX3CR1(-/-)) mice, which, however, exhibited a similar degree of intraperitoneal leukocyte infiltration as WT mice. Despite this, CX3CR1(-/-) mice exhibited impairment in intraperitoneal bacterial clearance, together with a reduction in the expression of intraperitoneal inducible NO synthase (iNOS) and bactericidal proinflammatory cytokines, including IL-1beta, TNF-alpha, IFN-gamma, and IL-12, compared with WT mice. Bactericidal ability of peritoneal phagocytes such as neutrophils and macrophages was consistently attenuated in CX3CR1(-/-) mice compared with WT mice. Moreover, when WT macrophages were stimulated in vitro with CX3CL1, their bactericidal activity was augmented in a dose-dependent manner, with enhanced iNOS gene expression and subsequent NO generation. Furthermore, CX3CL1 enhanced the gene expression of IL-1beta, TNF-alpha, IFN-gamma, and IL-12 by WT macrophages with NF-kappaB activation. Thus, CX3CL1-CX3CR1 interaction is crucial for optimal host defense against bacterial infection by activating bacterial killing functions of phagocytes, and by augmenting iNOS-mediated NO generation and bactericidal proinflammatory cytokine production mainly through the NF-kappaB signal pathway, with few effects on macrophage infiltration.  相似文献   

13.
Acute lung injury (ALI) is identified with the targeting/sequestration of polymorphonuclear leukocytes (PMN) to the lung. Instrumental to PMN targeting are chemokines [e.g., macrophage inflammatory protein-2 (MIP-2), keratinocyte-derived chemokine (KC), etc.] produced by macrophage, PMN, and other resident pulmonary cells. However, the relative contribution of resident pulmonary macrophages as opposed to PMN in inducing ALI is poorly understood. We therefore hypothesize that depletion of peripheral blood PMN and/or the oblation of a macrophage-mediated PMN chemokine signal (via macrophage deficiency) will reduce the inflammation and ALI observed in mice following hemorrhage (Hem) and subsequent sepsis (CLP) in our murine model of ALI. To examine this we pretreated mice with either 500 microg anti-mouse Gr1 antibody/animal (to deplete PMN) or subjected mice deficient in mature macrophage (B6C3Fe-a/a-CsF1op) to Hem (90 min at 35 +/- 5 mmHg) followed by resuscitation. Twenty-four hours post-Hem, mice were subjected to CLP and killed 24 h later, and lung tissue samples were collected. Our data showed that in the absence of either peripheral blood PMN or mature tissue macrophages there was a suppression of IL-6, KC, and MIP-2 levels in lung tissue from Hem/CLP mice as well as a reduction in PMN influx to the lung and lung injury (bronchoalveolar lavage fluid protein). In contrast, lung tissue IL-10 and TNF-alpha levels were suppressed in the macrophage-deficient Hem/CLP mice compared with PMN-depleted Hem/CLP mice. Together, these data suggest that both the PMN and the macrophage are required to induce inflammation seen here, however, macrophage not PMN regulate the release of IL-10, independent of local changes in TNF.  相似文献   

14.
In this study we have determined the role of endogenous interleukin (IL)-10 on leucocyte recruitment and production of the CC chemokine macrophage inflammatory protein-1alpha (MIP-1alpha) in a murine model of acute inflammation. Intraperitoneal injection of zymosan produced a dose-dependent cellular infiltration which was concomitant with MIP-1alpha release in the lavage fluids. Release of this chemokine had a functional role since treatment of mice with a specific anti-MIP-1alpha antibody reduced both neutrophil and monocyte accumulation into the peritoneal cavity. An unexpected increase in cell influx and MIP-1alpha production was measured following depletion of resident peritoneal macrophages, as achieved by a 3-day liposome treatment. A similar result was obtained when the zymosan peritonitis response was elicited in IL-10 knock-out mice. In summary we propose a functional cross talk between endogenous IL-10 and this CC chemokine during the host inflammatory response.  相似文献   

15.
16.
17.
The expression of chemokines has been suggested to involve an interdependent network, with the absence of a single chemokine affecting the expression of multiple other chemokines. Monocyte chemoattractant protein (MCP-1), a member of C-C chemokine superfamily, plays a critical role in the recruitment and activation of leukocytes during acute inflammation. To examine the effect of the loss of MCP-1 on expression of the chemokine network, we compared the mRNA expression profiles of MCP-1(-/-) and wild type mice during the acute inflammatory phase of excisional wounds. Utilizing a mouse cDNA array containing 514 chemokine and chemokine related genes, the loss of MCP-1 was observed to cause a significant upregulation of nine genes (Decorin, Persephin, IL-1beta, MIP-2, MSP, IL1ra, CCR5, CCR3, IL-11) and significant downregulation of two genes (CCR4 and CD3Z) in acute wounds. The array data was confirmed by semi-quantitative RT-PCR. The effect of MCP-1 deletion on chemokine expression was further examined in isolated macrophages. Compared to wild type, LPS-stimulated peritoneal macrophages from MCP-1(-/-) mice showed a significant increase in the expression of RANTES, MIP-1beta, MIP-1alpha and MIP-2 mRNA. The data suggest that loss of a single chemokine perturbs the chemokine network not only in the setting of acute inflammation but even in an isolated inflammatory cell, the macrophage.  相似文献   

18.
Apoptotic cells are removed by phagocytes without causing inflammation. It remains largely unresolved whether anti-inflammatory mediators prevent neutrophil infiltration upon apoptotic cell clearance in vivo. In this study, we showed that, upon induction of apoptosis in the thymus by x-ray, inducible NO synthase knockout (KO) mice exhibited higher levels of neutrophil infiltration and production of MIP-2 and keratinocyte-derived chemokine (KC) in the thymus than wild-type (WT) mice. Furthermore, administration of NG-nitro-L-arginine methyl ester, an inhibitor of NO synthase, to x-irradiated WT mice increased the level of neutrophil infiltration to that of KO mice by the augmentation of MIP-2 and KC production. Additionally, thymic macrophages isolated from x-irradiated KO mice produced more MIP-2 and KC than those from WT mice. Thus, although apoptosis is believed to be noninflammatory, this is actually achieved by the production of immunosuppressive signals such as NO that counteract proinflammatory chemokines such as MIP-2 and KC.  相似文献   

19.
Dysregulated inflammation is a complication of type 2 diabetes (T2D). In this study, we show that augmented LPS-induced TNF-alpha production by resident peritoneal macrophages (PerMphi) in type 2 diabetic (db/db) mice is dependent on elevated glucose and requires p38 MAPK. Intraperitoneal LPS administered to db/db and nondiabetic (db/+) mice induced 3- and 4-fold more TNF-alpha in the peritoneum and serum, respectively, of db/db mice as compared with db/+ mice. Examination of the TLR-4/MD2 complex and CD14 expression showed no difference between db/db and db/+ PerMphi. Ex vivo stimulation of PerMphi with LPS produced a similar 3-fold increase in TNF-alpha production in db/db PerMphi when compared with db/+ PerMphi. PerMphi isolated from db/+ mice incubated in high glucose (4 g/L) medium for 12 h produced nearly 2-fold more TNF-alpha in response to LPS than PerMphi incubated in normal glucose medium (1 g/L). LPS-dependent stimulation of PI3K activity, ERK1/2 activation, and p38 kinase activity was greater in PerMphi from db/db mice as compared with db/+ mice. Only inhibition of p38 kinase blocked LPS-induced TNF-alpha production in PerMphi from db/db mice. Taken together, these data indicate that augmented TNF-alpha production induced by LPS in macrophages during diabetes is due to hyperglycemia and increased LPS-dependent activation of p38 kinase.  相似文献   

20.
Pulmonary inflammation, abnormalities in alveolar type II cell and macrophage morphology, and pulmonary fibrosis are features of Hermansky-Pudlak Syndrome (HPS). We used the naturally occurring "pearl" HPS2 mouse model to investigate the mechanisms of lung inflammation observed in HPS. Although baseline bronchoalveolar lavage (BAL) cell counts and differentials were similar in pearl and strain-matched wild-type (WT) mice, elevated levels of proinflammatory (MIP1gamma) and counterregulatory (IL-12p40, soluble TNFr1/2) factors, but not TNF-alpha, were detected in BAL from pearl mice. After intranasal LPS challenge, BAL levels of TNF-alpha, MIP1alpha, KC, and MCP-1 were 2- to 3-fold greater in pearl than WT mice. At baseline, cultured pearl alveolar macrophages (AMs) had markedly increased production of inflammatory cytokines. Furthermore, pearl AMs had exaggerated TNF-alpha responses to TLR4, TLR2, and TLR3 ligands, as well as increased IFN-gamma/LPS-induced NO production. After 24 h in culture, pearl AM LPS responses reverted to WT levels, and pearl AMs were appropriately refractory to continuous LPS exposure. In contrast, cultured pearl peritoneal macrophages and peripheral blood monocytes did not produce TNF-alpha at baseline and had LPS responses which were no different from WT controls. Exposure of WT AMs to heat- and protease-labile components of pearl BAL, but not WT BAL, resulted in robust TNF-alpha secretion. Similar abnormalities were identified in AMs and BAL from another HPS model, pale ear HPS1 mice. We conclude that the lungs of HPS mice exhibit hyperresponsiveness to LPS and constitutive and organ-specific macrophage activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号