首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Adjusting for intermediate variables is a common analytic strategy for estimating a direct effect. Even if the total effect is unconfounded, the direct effect is not identified when unmeasured variables affect the intermediate and outcome variables. Therefore, some researchers presented bounds on the controlled direct effects via linear programming. They applied a monotonic assumption about treatment and intermediate variables and a no-interaction assumption to derive narrower bounds. Here, we improve their bounds without using linear programming and hence derive a bound under the monotonic assumption about an intermediate variable only. To improve the bounds, we further introduce the monotonic assumption about confounders. While previous studies assumed that an outcome is a binary variable, we do not make that assumption. The proposed bounds are illustrated using two examples from randomized trials.  相似文献   

2.
    
Summary .  Four major frameworks have been developed for evaluating surrogate markers in randomized trials: one based on conditional independence of observable variables, another based on direct and indirect effects, a third based on a meta-analysis, and a fourth based on principal stratification. The first two of these fit into a paradigm we call the causal-effects (CE) paradigm, in which, for a good surrogate, the effect of treatment on the surrogate, combined with the effect of the surrogate on the clinical outcome, allow prediction of the effect of the treatment on the clinical outcome. The last two approaches fall into the causal-association (CA) paradigm, in which the effect of the treatment on the surrogate is associated with its effect on the clinical outcome. We consider the CE paradigm first, and consider identifying assumptions and some simple estimation procedures; we then consider the CA paradigm. We examine the relationships among these approaches and associated estimators. We perform a small simulation study to illustrate properties of the various estimators under different scenarios, and conclude with a discussion of the applicability of both paradigms.  相似文献   

3.
    
Loeys T  Goetghebeur E 《Biometrics》2003,59(1):100-105
Survival data from randomized trials are most often analyzed in a proportional hazards (PH) framework that follows the intention-to-treat (ITT) principle. When not all the patients on the experimental arm actually receive the assigned treatment, the ITT-estimator mixes its effect on treatment compliers with its absence of effect on noncompliers. The structural accelerated failure time (SAFT) models of Robins and Tsiatis are designed to consistently estimate causal effects on the treated, without direct assumptions about the compliance selection mechanism. The traditional PH-model, however, has not yet led to such causal interpretation. In this article, we examine a PH-model of treatment effect on the treated subgroup. While potential treatment compliance is unobserved in the control arm, we derive an estimating equation for the Compliers PROPortional Hazards Effect of Treatment (C-PROPHET). The jackknife is used for bias correction and variance estimation. The method is applied to data from a recently finished clinical trial in cancer patients with liver metastases.  相似文献   

4.
DiRienzo AG 《Biometrics》2003,59(3):497-504
When testing the null hypothesis that treatment arm-specific survival-time distributions are equal, the log-rank test is asymptotically valid when the distribution of time to censoring is conditionally independent of randomized treatment group given survival time. We introduce a test of the null hypothesis for use when the distribution of time to censoring depends on treatment group and survival time. This test does not make any assumptions regarding independence of censoring time and survival time. Asymptotic validity of this test only requires a consistent estimate of the conditional probability that the survival event is observed given both treatment group and that the survival event occurred before the time of analysis. However, by not making unverifiable assumptions about the data-generating mechanism, there exists a set of possible values of corresponding sample-mean estimates of these probabilities that are consistent with the observed data. Over this subset of the unit square, the proposed test can be calculated and a rejection region identified. A decision on the null that considers uncertainty because of censoring that may depend on treatment group and survival time can then be directly made. We also present a generalized log-rank test that enables us to provide conditions under which the ordinary log-rank test is asymptotically valid. This generalized test can also be used for testing the null hypothesis when the distribution of censoring depends on treatment group and survival time. However, use of this test requires semiparametric modeling assumptions. A simulation study and an example using a recent AIDS clinical trial are provided.  相似文献   

5.
The compliance score in randomized trials is a measure of the effect of randomization on treatment received. It is in principle a group-level pretreatment variable and so can be used where individual-level measures of treatment received can produce misleading inferences. The interpretation of models with the compliance score as a regressor of interest depends on the link function. Using the identity link can lead to valid inference about the effects of treatment received even in the presence of nonrandom noncompliance; such inference is more problematic for nonlinear links. We illustrate these points with data from two randomized trials.  相似文献   

6.
Tests for no treatment effect in randomized clinical trials   总被引:1,自引:0,他引:1  
  相似文献   

7.
    
Zhang K  Traskin M  Small DS 《Biometrics》2012,68(1):75-84
For group-randomized trials, randomization inference based on rank statistics provides robust, exact inference against nonnormal distributions. However, in a matched-pair design, the currently available rank-based statistics lose significant power compared to normal linear mixed model (LMM) test statistics when the LMM is true. In this article, we investigate and develop an optimal test statistic over all statistics in the form of the weighted sum of signed Mann-Whitney-Wilcoxon statistics under certain assumptions. This test is almost as powerful as the LMM even when the LMM is true, but it is much more powerful for heavy tailed distributions. A simulation study is conducted to examine the power.  相似文献   

8.
    
Matsui S 《Biometrics》2004,60(4):965-976
This article develops randomization-based methods for times to repeated events in two-arm randomized trials with noncompliance and dependent censoring. Structural accelerated failure time models are assumed to capture causal effects on repeated event times and dependent censoring time, but the dependence structure among repeated event times and dependent censoring time is unspecified. Artificial censoring techniques to accommodate nonrandom noncompliance and dependent censoring are proposed. Estimation of the acceleration parameters are based on rank-based estimating functions. A simulation study is conducted to evaluate the performance of the developed methods. An illustration of the methods using data from an acute myeloid leukemia trial is provided.  相似文献   

9.
Causal approaches based on the potential outcome framework providea useful tool for addressing noncompliance problems in randomizedtrials. We propose a new estimator of causal treatment effectsin randomized clinical trials with noncompliance. We use theempirical likelihood approach to construct a profile randomsieve likelihood and take into account the mixture structurein outcome distributions, so that our estimator is robust toparametric distribution assumptions and provides substantialfinite-sample efficiency gains over the standard instrumentalvariable estimator. Our estimator is asymptotically equivalentto the standard instrumental variable estimator, and it canbe applied to outcome variables with a continuous, ordinal orbinary scale. We apply our method to data from a randomizedtrial of an intervention to improve the treatment of depressionamong depressed elderly patients in primary care practices.  相似文献   

10.
    
Summary .  Regression models are often used to test for cause-effect relationships from data collected in randomized trials or experiments. This practice has deservedly come under heavy scrutiny, because commonly used models such as linear and logistic regression will often not capture the actual relationships between variables, and incorrectly specified models potentially lead to incorrect conclusions. In this article, we focus on hypothesis tests of whether the treatment given in a randomized trial has any effect on the mean of the primary outcome, within strata of baseline variables such as age, sex, and health status. Our primary concern is ensuring that such hypothesis tests have correct type I error for large samples. Our main result is that for a surprisingly large class of commonly used regression models, standard regression-based hypothesis tests (but using robust variance estimators) are guaranteed to have correct type I error for large samples, even when the models are incorrectly specified. To the best of our knowledge, this robustness of such model-based hypothesis tests to incorrectly specified models was previously unknown for Poisson regression models and for other commonly used models we consider. Our results have practical implications for understanding the reliability of commonly used, model-based tests for analyzing randomized trials.  相似文献   

11.
    
Summary Evaluation of HIV vaccine candidates in nonhuman primates (NHPs) is a critical step toward developing a successful vaccine to control the HIV pandemic. Historically, HIV vaccine regimens have been tested in NHPs by administering a single high dose of the challenge virus. More recently, evaluation of candidate HIV vaccines has entailed repeated low‐dose challenges, which more closely mimic typical exposure in natural transmission settings. In this article, we consider evaluation of the type and magnitude of vaccine efficacy from such experiments. Based on the principal stratification framework, we also address evaluation of potential immunological surrogate endpoints for infection.  相似文献   

12.
13.
    
Unmeasured confounders are a common problem in drawing causal inferences in observational studies. VanderWeele (Biometrics 2008, 64, 702–706) presented a theorem that allows researchers to determine the sign of the unmeasured confounding bias when monotonic relationships hold between the unmeasured confounder and the treatment, and between the unmeasured confounder and the outcome. He showed that his theorem can be applied to causal effects with the total group as the standard population, but he did not mention the causal effects with treated and untreated groups as the standard population. Here, we extend his results to these causal effects, and apply our theorems to an observational study. When researchers have a sense of what the unmeasured confounder may be, conclusions can be drawn about the sign of the bias.  相似文献   

14.
BACKGROUND: It was shown that a traditional Chinese medicine, Hochu-ekki-to (HET), had adjuvant effects in influenza vaccination in an animal experiment. This, however, could not be assessed in a clinical study. METHODS: Thirty-two healthy subjects were randomly assigned to two groups (control and HET groups) in a double-blind manner. HET subjects (n=17) took 7.5 g of HET/day for two weeks; control subjects took the same amount of indistinguishable placebo. Then subjects were vaccinated against influenza (H1N1, H3N2 and B/Shandong). Hemagglutinin titers and natural killer (NK) activity were measured at weeks 0, 1, 2, 4, and 12. RESULTS: Antiinfluenza titers against the three viruses were increased continuously for the first two weeks and leveled off. However, there were no significant differences in any titers between the two groups. NK activity peaked at week 2 without any inter-group differences. CONCLUSION: We could not find any adjuvant effects of HET in this experimental condition.  相似文献   

15.
A previous randomized placebo-controlled double-blinded clinical trial revealed that treatment of osteoporotic subjects supplemented with 200 or 400 IU/day vitamin D3 with 0.75 μg/day ED-71 for 12 months increased lumbar and hip bone mineral density (BMD) by 3.4 and 1.5%, respectively, compared to placebo group (JCE&M 90:5031,2005). These effects on BMD were stronger than any previous results using 1(OH)D3 or 1,25(OH)2D3. However, there still was a concern that the effect of ED-71 could be observed because serum 25(OH)D in many of these subjects were below its optimal level. In order to address this issue, we performed post hoc analysis to compare the effect of ED-71 on lumbar and hip BMD between subjects with upper (>29 ng/mL) and lower tertiles (<25 ng/mL) of serum 25(OH)D. Lumbar BMD after 12-month treatment with 0.5, 0.75 and 1.0 μg/day ED-71 increased similarly in both lower and upper tertile groups of serum 25(OH)D. In addition, hip BMD also showed a tendency to increase when 0.75 and 1.0 μg/day ED-71 groups were combined together in both upper and lower serum 25(OH)D tertile groups, although the increase was not statistically significant. These results demonstrate that the effect of ED-71 on bone is independent of supplementary effect for nutritional vitamin D insufficiency, and suggest that ED-71 may exert its effect as a unique VDR ligand with stronger effect on bone compared to the natural ligand, 1,25(OH)2D3.  相似文献   

16.
17.
    
Vaccines with limited ability to prevent HIV infection may positively impact the HIV/AIDS pandemic by preventing secondary transmission and disease in vaccine recipients who become infected. To evaluate the impact of vaccination on secondary transmission and disease, efficacy trials assess vaccine effects on HIV viral load and other surrogate endpoints measured after infection. A standard test that compares the distribution of viral load between the infected subgroups of vaccine and placebo recipients does not assess a causal effect of vaccine, because the comparison groups are selected after randomization. To address this problem, we formulate clinically relevant causal estimands using the principal stratification framework developed by Frangakis and Rubin (2002, Biometrics 58, 21-29), and propose a class of logistic selection bias models whose members identify the estimands. Given a selection model in the class, procedures are developed for testing and estimation of the causal effect of vaccination on viral load in the principal stratum of subjects who would be infected regardless of randomization assignment. We show how the procedures can be used for a sensitivity analysis that quantifies how the causal effect of vaccination varies with the presumed magnitude of selection bias.  相似文献   

18.
19.
The precision of a treatment contrast, as conventionally estimated in Zelen's Single-Consent Design, is shown under randomization theory to be positively biased. The magnitude of this bias is demonstrated and a new statistic is derived which is a consistent estimator of the precision. Confidence interval estimation for the treatment contrast is also presented.  相似文献   

20.
    
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号