首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sox B1 group genes, Sox1, Sox2, and Sox3 (Sox1-3), are involved in neurogenesis in various species. Here, we identified the Xenopus homolog of Sox1, and investigated its expression patterns and neural inducing activity. Sox1 was initially expressed in the anterior neural plate of Xenopus embryos, with expression restricted to the brain and optic vesicle by the tailbud stage. Expression subsequently decreased in the eye region by the tadpole stage. Sox1 expression in animal cap explants was induced by inhibition of BMP signaling in the same manner as Sox2, Sox3, and SoxD. In addition, overexpression of Sox1 induced neural markers in ventral ectoderm and in animal caps. These results implicate Xenopus Sox1 in neurogenesis, especially brain and eye development.  相似文献   

2.
Sox proteins and neural crest development   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
Neural plate and sensory placodes share the expression of N-cadherin and Group B1 Sox genes, represented by Sox2. A 219-kb region of the chicken genome centered by the N-cadherin gene was scanned for neural and placodal enhancers. Random subfragments of 4.5 kb average length were prepared and inserted into tkEGFP reporter vector to construct a library with threefold coverage of the region. Each clone was then transfected into N-cadherin-positive (lens, retina and forebrain) or -negative embryonic cells, or electroporated into early chicken embryos to examine enhancer activity. Enhancers 1-4 active in the CNS/placode derivatives and non-specific Enhancer 5 were identified by transfection, while electroporation of early embryos confirmed enhancers 2-4 as having activity in the early CNS and/or sensory placodes but with unique spatiotemporal specificities. Enhancers 2-4 are dependent on SOX-binding sites, and misexpression of Group B1 Sox genes in the head ectoderm caused ectopic development of placodes expressing N-cadherin, indicating the involvement of Group B1 Sox functions in N-cadherin regulation. Enhancers 1, 2 and 4 correspond to sequence blocks conserved between the chicken and mammalian genomes, but enhancers 3 and 5 are unique to the chicken.  相似文献   

5.
6.
7.
克隆了非洲爪蟾的Sox1基因并研究了它在非洲爪蟾早期发育过程中的时空表达图式,比较了Sox1—3基因在发育的脑和眼中的表达图式。序列比对分析显示Sox1—3蛋白在其HMG框结构域具有高度的保守性。通过RT-PCR方法分析了Sox1基因在爪蟾早期不同发育时段的表达情况,结果显示Sox1基因从未受精卵到尾芽期均有表达,但表达强度有所差异。原位杂交结果显示,在早期卵裂阶段和囊胚期,Sox1基因主要在动物极表达;从神经板期开始,Sox1基因主要在中枢神经系统和眼原基中表达。在蝌蚪期,Sox1与Sox2、Sox3在脑部和眼睛的表达区域有所不同。对于爪蟾Sox1基因时空表达图式的研究将有助于阐明SoxB1基因家族在脊椎动物神经系统发生过程中的作用。  相似文献   

8.
9.
10.
11.
12.
We have identified and characterized the sequence and expression of two Group B Sox genes in the acorn worm, Ptychodera flava. One sequence represents a Group B1 Sox gene and is designated Pf-SoxB1; the other is a Group B2 Sox gene and is designated Pf-SoxB2. Both genes encode polypeptides with an HMG domain in the N-terminal half. Whole-mount in situ hybridization to embryonic and larval stages of P. flava shows that the two genes are expressed in rather similar patterns at these stages. Expression is first detected in the cells of the blastula and subsequently localizes to the ectoderm during gastrulation. As the mouth forms, expression becomes concentrated in the stomodeum region. During morphogenesis of the tornaria larva, expression in the stomodeal ectoderm remains prominent around the mouth and under the oral hood. Later the genes are prominently upregulated in the ciliary bands and the apical organ. These results provide additional evidence that genes playing essential roles in the formation of the chordate dorsal central nervous system function in the development of the ciliary bands and apical organ, neural structures of this non-chordate deuterostome larva.  相似文献   

13.
14.
15.
16.
Sox9 plays a critical role in early chondrocyte initiation and promotion as well as repression of later maturation. Fellow Sox family members L-Sox5 and Sox6 also function as regulators of cartilage development by boosting Sox9 activation of chondrocyte-specific genes such as Col2a1 and Agc1; however, the regulatory mechanism and other target genes are largely unknown. MicroRNAs are a class of short, non-coding RNAs that act as negative regulators of gene expression by promoting target mRNA degradation and/or repressing translation. Analysis of genetically modified mice identified miR-140 as a cartilage-specific microRNA that could be a critical regulator of cartilage development and homeostasis. Recent findings suggest Sox9 promotes miR-140 expression, although the detailed mechanisms are not fully understood. In this study we demonstrate that the proximal upstream region of pri-miR-140 has chondrogenic promoter activity in vivo. We found an L-Sox5/Sox6/Sox9 (Sox trio) response element and detailed binding site in the promoter region. Furthermore, detailed analysis suggests the DNA binding and/or transactivation ability of Sox9 as a homodimer is boosted by L-Sox5 and Sox6. These findings provide new insight into cartilage-specific gene regulation by the Sox trio.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号