首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Receptor tyrosine kinase signaling cooperates with WNT/β-catenin signaling in regulating many biological processes, but the mechanisms of their interaction remain poorly defined. We describe a potent activation of WNT/β-catenin by FGFR2, FGFR3, EGFR and TRKA kinases, which is independent of the PI3K/AKT pathway. Instead, this phenotype depends on ERK MAP kinase-mediated phosphorylation of WNT co-receptor LRP6 at Ser1490 and Thr1572 during its Golgi network-based maturation process. This phosphorylation dramatically increases the cellular response to WNT. Moreover, FGFR2, FGFR3, EGFR and TRKA directly phosphorylate β-catenin at Tyr142, which is known to increase cytoplasmic β-catenin concentration via release of β-catenin from membranous cadherin complexes. We conclude that signaling via ERK/LRP6 pathway and direct β-catenin phosphorylation at Tyr142 represent two mechanisms used by various receptor tyrosine kinase systems to activate canonical WNT signaling.  相似文献   

3.
Wang  Wei  Zhao  Zilong  Han  Shuai  Wu  Di 《Cellular and molecular neurobiology》2022,42(7):2321-2335

Glioblastomas (GBMs) are the most frequent primary malignancies in the central nervous system. Aberrant activation of WNT/β-catenin signaling pathways is critical for GBM malignancy. However, the regulation of WNT/β-catenin signaling cascades remains unclear. Presently, we observed the increased expression of ZEB2 and the decreased expression of miR-637 in GBM. The expression of miR-637 was negatively correlated with ZEB2 expression. miR-637 overexpression overcame the ZEB2-enhanced cell proliferation and G1/S phase transition. Besides, miR-637 suppressed the canonical WNT/β-catenin pathways by targeting WNT7A directly. Gain- and loss-of-function experiments with U251 mice demonstrated that miR-637 inhibited cell proliferation and arrested the G1/S phase transition, leading to tumor growth suppression. The collective findings suggest that ZEB2 and WNT/β-catenin cascades merge at miR-637, and the ectopic expression of miR-637 disturbs ZEB2/WNT/β-catenin-mediated GBM growth. The findings provide new clues for improving β-catenin-targeted therapy against GBM.

  相似文献   

4.
Both bone morphogenetic protein 2 (BMP2) and WNT/β-catenin signaling promote human trophoblast cell invasion. BMP2 has been shown to up-regulate bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) in granulosa cells. Besides, studies indicate BAMBI is a positive regulator for WNT/β-catenin signaling. However, whether BMP2 can increase BAMBI expression to induce WNT/β-catenin signaling for trophoblast cell invasion is still unknown. To study the roles of BAMBI in BMP2-induced activation of WNT/β-catenin signaling and human trophoblast invasion, we used immortalized human extravillous trophoblast (EVT) cell line (HTR8/SVneo) and primary human EVT cells as study models. Messenger RNA and protein levels of target genes were checked with RT-qPCR and Western blot assay respectively. The function of target proteins was studied via small interfering RNA (siRNA)-mediated knockdown. In addition, trophoblast cell invasiveness was examined by matrigel-coated transwell assays. Our results demonstrate that BMP2 treatment increased BAMBI mRNA levels and the activation of WNT/β-catenin signaling including the raised phosphorylation of GSK3β, the up-regulation of active (non-phosphorylated) β-catenin as well as its downstream target molecule cyclin D1, all of which were totally blocked by the activin receptor-like kinases (ALK) 2/3 inhibitor DMH1 or siRNA-mediated knockdown of BAMBI in HTR8/SVneo cells. Consistently, in primary human EVT cells, BMP2 also induced the up-regulation of BAMBI and the activation of WNT/β-catenin signaling indicated by the increased levels of active β-catenin and cyclin D1, which were completely blocked by BAMBI knockdown. In conclusion, BMP2 promotes the activation of canonical WNT/β-catenin signaling and human trophoblast cell invasion by up-regulating BAMBI.  相似文献   

5.
Fibroblast growth factor (FGF) 9 is a secreted signaling molecule that is expressed in lung mesothelium and epithelium and is required for lung development. Embryos lacking FGF9 show mesenchymal hypoplasia, decreased epithelial branching and, by the end of gestation, hypoplastic lungs that cannot support life. Mesenchymal FGF signaling interacts with β-catenin-mediated WNT signaling in a feed-forward loop that functions to sustain mesenchymal FGF responsiveness and mesenchymal WNT/β-catenin signaling. During pseudoglandular stages of lung development, Wnt2a and Wnt7b are the canonical WNT ligands that activate mesenchymal WNT/β-catenin signaling, whereas FGF9 is the only known ligand that signals to mesenchymal FGF receptors (FGFRs). Here, we demonstrate that mesothelial- and epithelial-derived FGF9, mesenchymal Wnt2a and epithelial Wnt7b have unique functions in lung development in mouse. Mesothelial FGF9 and mesenchymal WNT2A are principally responsible for maintaining mesenchymal FGF-WNT/β-catenin signaling, whereas epithelial FGF9 primarily affects epithelial branching. We show that FGF signaling is primarily responsible for regulating mesenchymal proliferation, whereas β-catenin signaling is a required permissive factor for mesenchymal FGF signaling.  相似文献   

6.
7.
The rapid expansion of the elderly population has led to the recent epidemic of age-related diseases, including increased incidence and mortality of chronic lung diseases, such as Idiopathic Pulmonary Fibrosis (IPF). Cellular senescence is a major hallmark of aging and has a higher occurrence in IPF. The lung epithelium represents a major site of tissue injury, cellular senescence and aberrant activity of developmental pathways such as the WNT/β-catenin pathway in IPF. The potential impact of WNT/β-catenin signaling on alveolar epithelial senescence in general as well as in IPF, however, remains elusive. Here, we characterized alveolar epithelial cells of aged mice and assessed the contribution of chronic WNT/β-catenin signaling on alveolar epithelial type (AT) II cell senescence. Whole lungs from old (16–24 months) versus young (3 months) mice had relatively less epithelial (EpCAM+) but more inflammatory (CD45+) cells, as assessed by flow cytometry. Compared to young ATII cells, old ATII cells showed decreased expression of the ATII cell marker Surfactant Protein C along with increased expression of the ATI cell marker Hopx, accompanied by increased WNT/β-catenin activity. Notably, when placed in an organoid assay, old ATII cells exhibited decreased progenitor cell potential. Chronic canonical WNT/β-catenin activation for up to 7 days in primary ATII cells as well as alveolar epithelial cell lines induced a robust cellular senescence, whereas the non-canonical ligand WNT5A was not able to induce cellular senescence. Moreover, chronic WNT3A treatment of precision-cut lung slices (PCLS) further confirmed ATII cell senescence. Simultaneously, chronic but not acute WNT/β-catenin activation induced a profibrotic state with increased expression of the impaired ATII cell marker Keratin 8. These results suggest that chronic WNT/β-catenin activity in the IPF lung contributes to increased ATII cell senescence and reprogramming. In the fibrotic environment, WNT/β-catenin signaling thus might lead to further progenitor cell dysfunction and impaired lung repair.  相似文献   

8.
9.
WNT-3A is a secreted lipoglycoprotein that engages Class Frizzled receptors and LDL receptor related protein 5/6 (LRP5/6) for cellular communication. Generally, WNT-3A mediates WNT/β-catenin signaling to regulate TCF/LEF-dependent gene expression. We have previously shown that β-catenin levels are elevated in proinflammatory microglia of Alzheimer's disease patients and that WNT-3A can evoke a strong proinflammatory response in primary microglia. In order to investigate the underlying mechanisms, we focus here on the pharmacological dissection of WNT-3A-induced signaling to β-catenin and to the extracellular signal-regulated kinases 1/2 (ERK1/2) in mouse primary microglia. Both pathways are induced by WNT-3A with slightly different kinetics, suggesting that they might be pharmacologically separable. Inhibition of heterotrimeric Gαi/o proteins by pertussis toxin blocks WNT-3A-induced LRP6 phosphorylation, disheveled shift, β-catenin stabilization and phosphorylation of ERK1/2. On the other hand LRP6 blockade by Dickkopf 1 treatment abrogated the WNT/β-catenin pathway without affecting WNT/ERK1/2 signaling. In the opposite way, inhibition of βγ subunits, phospholipase C (PLC), intracellular calcium and MEK1/2, the upstream kinase of ERK1/2, blocked ERK1/2 phosphorylation but not β-catenin stabilization. In summary, the data suggest a central role of Gαi/o for both β-catenin-dependent and -independent pathways. WNT-3A-induced ERK1/2 phosphorylation is mediated by βγ subunits, PLC, intracellular calcium and MEK1/2. Furthermore, we show that cyclooxygenase 2 (COX2), a generic proinflammatory marker of microglia, is induced by WNT-3A through ERK1/2-dependent pathways arguing that β-catenin-independent signaling downstream of WNT-3A is of physiological importance for the proinflammatory regulation of microglia.  相似文献   

10.
Abnormal activation the WNT/β-catenin signaling pathway has been associated with ovarian carcinomas, but a specific WNT ligand and pertinent downstream mechanisms are not fully understood. In this study, we found abundant WNT7A in the epithelium of serous ovarian carcinomas, but not detected in borderline and benign tumors, normal ovary, or endometrioid carcinomas. To characterize the role of WNT7A in ovarian tumor growth and progression, nude mice were injected either intraperitoneally or subcutaneously with WNT7A knocked down SKOV3.ip1 and overexpressed SKOV3 cells. In the intraperitoneal group, mice receiving SKOV3.ip1 cells with reduced WNT7A expression developed significantly fewer tumor lesions. Gross and histologic examination revealed greatly reduced invasion of WNT7A knockdown cells into intestinal mesentery and serosa compared with the control cells. Tumor growth was regulated by loss or overexpression of WNT7A in mice receiving subcutaneous injection as well. In vitro analysis of cell function revealed that cell proliferation, adhesion, and invasion were regulated by WNT7A. The activity of the T-cell factor/lymphoid enhancer factor (TCF/LEF) reporter was stimulated by overexpression of WNT7A in ovarian cancer cells. Cotransfection with WNT7A and FZD5 receptor further increased activity, and this effect was inhibited by cotransfection with SFRP2 or dominant negative TCF4. Overexpression of WNT7A stimulated matrix metalloproteinase 7 (MMP7) promoter, and mutation of TCF-binding sites in MMP7 promoter confirmed that activation of MMP7 promoter by WNT7A was mediated by β-catenin/TCF signaling. Collectively, these results suggest that reexpression of WNT7A during malignant transformation of ovarian epithelial cells plays a critical role in ovarian cancer progression mediated by WNT/β-catenin signaling pathway.  相似文献   

11.
12.
13.
Wnt/β-catenin signaling has a well-established role in the development of the central nervous system (CNS), and recent evidence is extending this role to include the regulation of adult hippocampal function, including neurogenesis within the dentate gyrus. While the neuroanatomical expression pattern of many canonical Wnt signaling components have been investigated, the sites of signal integration and functional downstream β-catenin activation remain comparatively less characterized in the adult CNS. Using two independent transgenic β-catenin-activated LacZ reporter mouse lines (BatGal and ins-TopGal), we demonstrate that Wnt/β-catenin signaling is active in discrete regions of the adult mouse CNS. Intriguingly, BatGal mice exhibit a broad pattern of reporter expression in the CNS, while expression in ins-TopGal mice is more restricted. Further investigation of these two lines reveals temporal differences in β-catenin-activated reporter expression during neurogenesis within the adult hippocampus. Ins-TopGal mice display peaks of Wnt/β-catenin-activated reporter expression during early and later stages of neurogenesis suggesting Wnt/β-catenin signaling plays an important role during both progenitor cell amplification as well as neuronal maturation, integration, and/or maintenance; however, results from BatGal mice are not as convincing. Thus our data using ins-TopGal mice are consistent with the idea that Wnt signaling plays diverse roles during adult hippocampal neurogenesis and support the idea that multiple transgenic reporter lines must be rigorously compared during scientific investigations.  相似文献   

14.
Molecules involved in WNT/β-catenin signaling show specific spatiotemporal expression and play vital roles in myogenesis; however, it is still largely unknown how WNT/β-catenin signaling regulates each step of myogenesis. Here, we show that WNT/β-catenin signaling can control diverse biological processes of myogenesis by regulating step-specific molecules. In order to identify the temporally specific roles of WNT/β-catenin signaling molecules in muscle development and homeostasis, we used in vitro culture systems for both primary mouse myoblasts and C2C12 cells, which can differentiate into myofibers. We found that a blockade of WNT/β-catenin signaling in the proliferating cells decreases proliferation activity, but does not induce cell death, through the regulation of genes cyclin A2 (Ccna2) and cell division cycle 25C (Cdc25c). During muscle differentiation, the inhibition of WNT/β-catenin signaling blocks myoblast fusion through the inhibition of the Fermitin family homolog 2 (Fermt2) gene. Blocking WNT/β-catenin signaling in the well-differentiated myofibers results in the failure of maintenance of their structure by disruption of cadherin/β-catenin/actin complex formation, which plays a crucial role in connecting a myofiber''s cytoskeleton to the surrounding extracellular matrix. Thus, our results indicate that WNT/β-catenin signaling can regulate multiple steps of myogenesis, including cell proliferation, myoblast fusion, and homeostasis, by targeting step-specific molecules.  相似文献   

15.
Wnt/β-catenin signaling plays a major role in embryonic development and adult stem cell maintenance. Reduced activation of the Wnt/β-catenin pathway underlies neurodegenerative disorders and aberrations in bone formation. Screening of a small molecule compound library with a β-galactosidase fragment complementation assay measuring β-catenin nuclear entry revealed bona fide activators of β-catenin signaling. The compounds stabilized cytoplasmic β-catenin and activated β-catenin-dependent reporter gene activity. Although the mechanism through which the compounds activate β-catenin signaling has yet to be determined, several key regulators of Wnt/β-catenin signaling, including glycogen synthase kinase 3 and Frizzled receptors, were excluded as the molecular target. The compounds displayed remarkable selectivity, as they only induced β-catenin signaling in a human osteosarcoma U2OS cell line and not in a variety of other cell lines examined. Our data indicate that differences in cellular Wnt/β-catenin signaling machinery can be exploited to identify cell type-specific activators of Wnt/β-catenin signaling.  相似文献   

16.
Yuan G  Wang C  Ma C  Chen N  Tian Q  Zhang T  Fu W 《PloS one》2012,7(3):e34004
The Wnt/β-catenin signaling pathway plays important roles in the progression of colon cancer. DACT1 has been identified as a modulator of Wnt signaling through its interaction with Dishevelled (Dvl), a central mediator of both the canonical and noncanonical Wnt pathways. However, the functions of DACT1 in the WNT/β-catenin signaling pathway remain unclear. Here, we present evidence that DACT1 is an important positive regulator in colon cancer through regulating the stability and sublocation of β-catenin. We have shown that DACT1 promotes cancer cell proliferation in vitro and tumor growth in vivo and enhances the migratory and invasive potential of colon cancer cells. Furthermore, the higher expression of DACT1 not only increases the nuclear and cytoplasmic fractions of β-catenin, but also increases its membrane-associated fraction. The overexpression of DACT1 leads to the increased accumulation of nonphosphorylated β-catenin in the cytoplasm and particularly in the nuclei. We have demonstrated that DACT1 interacts with GSK-3β and β-catenin. DACT1 stabilizes β-catenin via DACT1-induced effects on GSK-3β and directly interacts with β-catenin proteins. The level of phosphorylated GSK-3β at Ser9 is significantly increased following the elevated expression of DACT1. DACT1 mediates the subcellular localization of β-catenin via increasing the level of phosphorylated GSK-3β at Ser9 to inhibit the activity of GSK-3β. Taken together, our study identifies DACT1 as an important positive regulator in colon cancer and suggests a potential strategy for the therapeutic control of the β-catenin-dependent pathway.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号