首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The present study highlights the protective role of β-aminobutyric acid (BABA) in alleviating cadmium (Cd) stress in soybean. Proteomic analyses revealed that out of 66 differentially abundant protein spots in response to Cd challenge, 17 were common in the leaves of BABA-primed and non-primed plants. Oxygen-evolving enhancer protein 1 and ribulose bisphosphate carboxylase small chain 1 were detected in increase abundance in both groups of leaves. Among the 15 commonly decreased protein spots, the relative intensity levels of heat shock cognate 70-kDa protein, carbonic anhydrase, methionine synthase, and glycine dehydrogenase were partially restored after BABA treatment. Moreover, BABA priming significantly enhanced the abundance of the defense-related protein peroxiredoxin and glycolytic enzymes in response to Cd exposure. Additionally, the impact of Cd on the physiological state of BABA-primed and non-primed plants was analyzed using a biophoton technique. The finding of comparatively low biophoton emission in BABA-primed leaves under Cd stress indicates that these plants experienced less oxidative damage than that of non-primed plants. Proteomic study coupled with biophoton analysis reveals that BABA pretreatment helps the plants to combat Cd stress by modulating plants' defence mechanism as well as activating cellular detoxification system to protect the cells from Cd induced oxidative stress damages.  相似文献   

3.
Both Fe deficiency and Cd exposure induce rapid changes in the S nutritional requirement of plants. The aim of this work was to characterize the strategies adopted by plants to cope with both Fe deficiency (release of phytosiderophores) and Cd contamination [production of glutathione (GSH) and phytochelatins] when grown under conditions of limited S supply. Experiments were performed in hydroponics, using barley plants grown under S sufficiency (1.2 mM sulphate) and S deficiency (0 mM sulphate), with or without Fe(III)-EDTA at 0.08 mM for 11 d and subsequently exposed to 0.05 mM Cd for 24 h or 72 h. In S-sufficient plants, Fe deficiency enhanced both root and shoot Cd concentrations and increased GSH and phytochelatin levels. In S-deficient plants, Fe starvation caused a slight increase in Cd concentration, but this change was accompanied neither by an increase in GSH nor by an accumulation of phytochelatins. Release of phytosiderophores, only detectable in Fe-deficient plants, was strongly decreased by S deficiency and further reduced after Cd treatment. In roots Cd exposure increased the expression of the high affinity sulphate transporter gene (HvST1) regardless of the S supply, and the expression of the Fe deficiency-responsive genes, HvYS1 and HvIDS2, irrespective of Fe supply. In conclusion, adequate S availability is necessary to cope with Fe deficiency and Cd toxicity in barley plants. Moreover, it appears that in Fe-deficient plants grown in the presence of Cd with limited S supply, sulphur may be preferentially employed in the pathway for biosynthesis of phytosiderophores, rather than for phytochelatin production.  相似文献   

4.
The effects of sodium nitroprusside (SNP, a donor of NO) on cadmium (Cd) toxicity in lettuce seedlings were studied. SNP was added into hydroponic systems or sprayed directly on the leaves of plants grown with and without Cd. Excess supply of Cd (100 μM) caused growth inhibition, dramatically increased Cd accumulation in both leaves and roots, and inhibited the absorption of Ca, Mg, Fe and Cu. Excess Cd also decreased activities of superoxide dismutase peroxidase and catalase in leaves and roots, and increased the accumulation of superoxide anion (O 2 ·? ), hydrogen peroxide (H2O2) and malondialdehyde (MDA). Root or foliar applications of exogenous NO alleviated Cd-induced growth suppression, especially root application of 250 μM SNP and foliar addition of 500 μM SNP. Addition of SNP promoted the chlorophyll synthesis suggesting that the photosynthesis was up-regulated. Exogenous NO increased Cd-decreased activities of antioxidant enzymes and markedly diminished Cd-induced reactive oxygen species (ROS) and MDA accumulation. Moreover, the absorption of Ca, Mg, Fe and Cu was increased, indicating that exogenous NO stimulated H+-ATPase activity to promote sequestration or uptake of ions. In addition, exogenous NO also inhibited Cd transfer from roots to shoots, which may indicate that Cd retention in roots induced by NO plays a significant role in Cd tolerance in lettuce seedlings. These data suggest that under Cd stress, exogenous NO improves photosynthesis by increasing chlorophyll synthesis, protects lettuce seedlings against oxidative damage by scavenging ROS, helps to maintain the uptake of nutrient elements, and inhibits Cd transferred to shoots effectively.  相似文献   

5.
Evidence exists that Cd and certain nutrient elements, such as Fe and Mg, could share similar mechanisms of plant uptake and accumulation. Here we report that Mg and Fe deficiency in mature plants of Salix viminalis, grown in hydroponic solutions containing 5 µg ml?1 of Cd, caused a significant increase in Cd accumulation in roots, stems and leaves. Cd (µg g?1 dry weight) was determined following three treatments: 1) Cd treatment in complete nutrient solution; 2) Cd treatment with Fe deficiency; and 3) Cd treatment with Mg deficiency, yielding, respectively: in young leaves (65.3, 76.1, and 92.2), mature leaves (51.5 to 76.3 and 87.1), upper stems (80.6, 116.8, and 130.6) lower stems (67.2, 119, and 102.3), roots (377.1, 744.8, and 442,5). Our results suggest that Cd utilizes the same uptake and transport pathways as Mg and Fe. Evidence exists that Mg and Fe uptake and translocation could be further facilitated by plants as an adaptive response to deficiency of these elements. Such physiological reaction could additionally stimulate Cd accumulation. Although Cd uptake was mostly confined in roots, high Cd content in aerial plant parts (51.5–130.6 µg g?1) indicates that the analysed Salix viminalis genotype is suitable for phytoextraction.  相似文献   

6.
Abstract

Trace metal contamination of soil is an increasing problem. Organic acid application can restore trace metal elements such as cadmium (Cd) in contaminated soil. Changbai larch (Larix olgensis A. Henry) is an economically important forestry species in northeast China; however, growth is inhibited by severe Cd contamination. We investigated the effects of different concentrations of exogenous succinic acid (SA) on Cd tolerance and physiological and morphological toxicity in L. olgensis seedlings. Seedlings were planted in pots containing Cd-contaminated or uncontaminated Haplic Cambisol. Seedlings in Cd-contaminated soil were treated daily with SA solution at 0, 0.04, 0.2, 1.0, and 2.0?mmol kg?1 of soil for 10, 20 or 30?days. Cd treatment induced seedling damage and significantly increased the relative conductivity and malondialdehyde content of the leaves, inhibiting soluble protein and proline contents, superoxide dismutase and peroxidase activity, chlorophyl fluorescence and pigment content. Decreases in the length, surface area, volume of roots and leaves, and specific root length were also observed. Effects increased in control plants with time. SA treatment also reduced the Cd content of the fine roots and leaves and Mg, K, and Ca contents. Moreover, plant growth was significantly promoted and damage was reversed, especially at 5.0 and 10.0?mmol?L?1 SA for 30?days. SA therefore alleviated Cd-induced injury, improving tolerance to Cd stress. SA application combined with afforestation could therefore help restore Cd-contaminated soil in northeast China. Further studies aimed at determining the detoxification mechanism of L. olgensis seedlings are now required.  相似文献   

7.
The role of salicylic acid (SA) in alleviating cadmium (Cd) toxicity was investigated in a hydroponic cultivation system. Short-term exposure of bean (Phaseolus vulgaris) plants to 20 μM Cd inhibited biomass production and intensively increased accumulation of Cd in both roots and leaves. At leaf level, Cd significantly decreased mineral ions, chlorophyll and carotenoids concentrations. Concomitantly, Cd enhanced electrolyte leakage, H2O2 content and lipid peroxidation as indicated by malondialdehyde (MDA) accumulation. SA pretreatment decreased the uptake and the transport of Cd, alleviated the Cd-induced inhibition of nutrient absorption and led to a significant increase of chlorophyll and carotenoid content. SA application alleviated the oxidative damages as evidenced by the lowered H2O2 and MDA content. SA particularly induced an increase in both CAT and APX activities accompanied by a significant reduction in SOD and POD activities. As important antioxidants, ascorbate and glutathione contents in bean leaves exposed to cadmium were significantly decreased by SA treatment. These results reveal the potentiating effect of salicylic acid in regulating cadmium induced oxidative stress in bean plants.  相似文献   

8.
Osmotic stress associated with drought and salinity is a serious problem that inhibits the growth of plants mainly due to disturbance of the balance between production of ROS and antioxidant defense and causes oxidative stress. In this research, sodium nitroprusside (SNP) was used as NO donor in control and drought-stressed plants, and the role of NO in reduction of oxidative damages were investigated. In this study, we observed that SNP pretreatment prevented drought-induced decrease in RWC and membrane stability index, increase in lipid peroxidation and lipoxygenase activity and increase in hydrogen peroxide content. However, pretreatment of plants with SNP and phenyl 4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (a NO scavenger) reversed the protective effects of SNP suggesting that protective effect by SNP is attributable to NO release. In addition, the relationship between these defense mechanisms and activity of antioxidant enzymes were checked. Results showed that in drought-stressed plants ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and catalase activities were elevated over the controls, while GR decreased under drought condition. Activity of GPX was inhibited under SNP pretreatment in drought-stressed plants specially, while the activity of APX and GR increased under SNP pretreatment and it seems that under this condition APX had a key role of detoxification of ROS in tomato plants. This result corresponded well with ASA and total acid-soluble thiols content. Therefore, reduction of drought-induced oxidative damages by NO in tomato leaves is most likely mediated through either NO ability to scavenge active oxygen species or stimulation of antioxidant enzyme such as APX.  相似文献   

9.
Iron nutrition affects cadmium accumulation and toxicity in rice plants   总被引:12,自引:0,他引:12  
The effect of iron (Fe) nutrition on cadmium (Cd) toxicity and accumulation in rice plants was studied using a hydroponic system. The inhibitory effect of Cd on plant growth and chlorophyll content (SPAD value) was dependent on Fe level and the genotype. Malondialdehyde (MDA) content in leaves and roots was not much affected by an increased Cd stress at 0.171 mg l−1 Fe, but it showed a rapid increase when the plants were exposed to moderate (1.89 mg l−1) and high (16.8 mg l−1) Fe levels. High Fe nutrition caused a marked reduction in Cd content in both leaves and roots. Fe content in plants was lower at high Cd (5.0 μM) stress than at low Cd (<1.0 μM) stress. Cd stress increased both superoxide dismutase (SOD) and peroxidase (POD) activities at low and moderate Fe levels. However, with high Fe level, it increased the POD activity, but reduced the SOD activity. Our results substantiate the hypothesis that cell membrane-bound iron transporter (carrier) involved in high-affinity iron transport systems can also transport Cd, and both these ions may compete for this common carrier. The study further showed that there were significant correlations between MDA and Fe contents in leaves and roots of rice plants. It is suggested that the occurrence of oxidative stress in plants exposed to Cd stress is mediated by Fe nutrition. The present results also show that Cd stress affects the uptake of Cu and Zn.  相似文献   

10.
The study aimed to test the effects of sodium nitroprusside [SNP, a nitric oxide (NO) donor], supplied with different approaches on cadmium (Cd) toxicity in lettuce seedlings (Lactuca sativa) in a pot experiment. SNP (8.94 mg) was applied into Cd-contaminated soil directly or added into a capsule, a paper bag, starch-coated granules, or foliar application. Cd (50 mg kg? 1) reduced chlorophyll content, caused oxidative stress, increased Cd accumulation in roots and leaves, and inhibited the uptake of calcium (Ca), magnesium (Mg), and iron (Fe). The addition of exogenous NO in Cd-contaminated soil increased chlorophyll content, improved antioxidant enzyme activities, promoted the uptake of Ca, Mg, and Fe, reduced Cd-induced oxidative damages, and inhibited Cd transferred from roots to shoots. Moreover, SNP supplied with different approaches had varied effects on Cd tolerance of lettuce seedlings. The alleviated effect of SNP applied into soil directly was the worst, and the three SNP slow release materials had better alleviation effects on Cd toxicity. Foliar SNP application had the best effects on increasing Cd tolerance in lettuce seedlings.  相似文献   

11.
Cadmium (Cd) has been identified as a significant pollutant due to its high solubility in water and soil and high toxicity to plants and animals. Rice, as one of the most important food crops, is grown in soils with variable levels of Cd and therefore, is important to discriminate the Cd tolerance of different rice cultivars to determine their suitability for cultivation in Cd-contaminated soils. This study investigates the primary mechanisms employed by four rice cultivars in attaining Cd tolerance. HA63 cultivar reduces Cd uptake by increasing Fe absorption through activation of phytosiderophores. T3028 cultivar accumulates the highest level of Cd in leaves while also activating its reactive oxygen species (ROS) scavenging system, including antioxidant enzymes and phytochelatins. In some rice cultivars (such as HA63), a cyanide-resistant respiration mechanism, important in Cd detoxification, was also promoted under the Cd stress. In conclusion, different rice cultivars may adopt different biochemical strategies and respond with different efficiency to Cd stress.  相似文献   

12.
The aim of this study was to investigate the protective role of Fe in providing tolerance against Cd-stress in root nodules of Vigna radiata, because Cd may be more deleterious in the absence of Fe. Biochemical, histological and proteomic responses to Cd-exposure (50?μM CdCl2) were examined under Fe-sufficient (+Fe/+Cd) or Fe-deficient (?Fe/+Cd) soils by comparing non ?Cd exposed control (+Fe/?Cd) plants with additional control of Fe-deficient and non-exposed Cd plants (?Fe/?Cd). Cd-exposure negatively affected on growth and some physiological parameters of host plant and nodules, and also induced oxidative stress with the decline of antioxidative enzyme activities. The negative effects of Cd-exposure in +Fe/+Cd plants were much less than those in ?Fe/+Cd and ?Fe/?Cd ones. When compared with ?Fe/Cd and ?Fe/?Cd plants, a marked improvement of bacteriod development and cell division was observed and deformation of cell wall remarkably alleviated in the nodules of (+Fe/Cd) plants. Proteomic study revealed that 20 proteins were differentially expressed by Fe/Cd combined treatment. Eleven proteins of interest were identified and classified as precursor for RNA metabolism, storage of seeds, hypothetical proteins, and unknown proteins. These results indicate that Fe plays a pivotal role in alleviating Cd-stress, as evidence by reduction in oxidative damage and protection of cell wall and bacteriods in nodules.  相似文献   

13.
Iron toxicity reduces growth of rice plants in acidic lowlands. Silicon nutrition may alleviate many stresses including heavy metal toxicity in plants. In the present study, the ameliorating effects of silicon nutrition on rice (Oryza sativa L.) plants under toxic Fe levels were investigated. Plants were cultivated in greenhouse in hydroponics under different Fe treatments including 10, 50, 100, and 250 mg L?1 as Fe-EDTA and silicon nutrition including 0 and 1.5 mM sodium silicate. Iron toxicity imposed significant reduction in plant fresh weight, tiller, and leaf number. The activity of catalase, cell wall, and soluble peroxidases, and polyphenol oxidase in shoots decreased due to moderate Fe toxicity (50 and 100 mg L?1), but increased at greater Fe concentration. Ascorbate peroxidase activity increased in both roots and shoots of Fe-stressed plants. Iron toxicity led to increased tissue hydrogen peroxide and lipid peroxidation. Silicon nutrition improved plant growth under all Fe treatments and alleviated Fe toxicity symptoms, probably due to lower Fe concentration of Si-treated plants. Silicon application could improve the activity of antioxidant enzymes such as catalase, ascorbate peroxidase, and soluble peroxidase under moderate Fe toxicity, which resulted in greater hydrogen peroxide detoxification and declined lipid peroxidation. Thus, silicon nutrition could ameliorate harmful effects of Fe toxicity possibly through reduction of plant Fe concentration and improvement of antioxidant enzyme activity.  相似文献   

14.
The present study investigated the possible mediatory role of salicylic acid (SA) in protecting plants from cadmium (Cd) toxicity. The exposure of pea plants to increasing Cd concentrations (0.5, 1.0, 2.0 and 5.0 μM) during early stages of their establishment, caused a gradual decrease in shoot and root fresh weight accumulation, the rate of CO2 fixation and the activity of ribulose-1,5-bisphosphate carboxylase (RuBPC, E.C. 4.1.1.39), the effect being most expressed at higher Cd concentrations. In vivo the excess of Cd-induced alterations in the redox cycling of oxygen-evolving centers and the assimilatory capacity of the pea leaves as revealed by changes in thermoluminescence emission after flash illumination. The levels of some important parameters associated with oxidative stress, namely lipid peroxidation, electrolyte leakage and proline production were increased. Seed pretreatment with SA alleviated the negative effect of Cd on growth, photosynthesis, carboxylation reactions, thermoluminescence characteristics and chlorophyll content, and led to decrease in oxidative injuries caused by Cd. The data suggest that the beneficial effect of SA during an earlier growth period could be related to avoidance of cumulative damage upon exposure to cadmium thus reducing the negative consequences of oxidative stress caused by heavy metal toxicity. In addition, the observed high endogenous levels of SA after treatment with Cd suggests that SA may act directly as an antioxidant to scavenge the reactive oxygen species and/or indirectly modulate redox balance through activation of antioxidant responses.Taken together these evidences could explain at some extend the protective role of SA on photochemical activity of chloroplast membranes and photosynthetic carboxylation reactions in Cd-stressed pea plants.  相似文献   

15.
从光合反应系统揭示外源硫(S)诱导马齿苋镉(Cd)耐受性的生理机制,为外源S缓解重金属毒害提供理论依据.采用营养液培养,研究外源S供体(NH4)2SO4对100 mg/L Cd胁迫下马齿苋叶片光合色素、光合特性、叶绿素荧光参数和矿质营养元素的影响.结果表明,Cd胁迫可显著降低马齿苋叶片中叶绿素a和叶绿素b含量;净光合速率、蒸腾速率、气孔导度均显著降低,而胞间二氧化碳浓度上升,表明非气孔因素是Cd胁迫诱导马齿苋光合抑制的主要因素;同时,PSⅡ实际光化学效率(ФPSII)、电子传递效率(J)、化学猝灭系数(qP)显著下降,而非化学猝灭系数(qN)显著上升,表明Cd胁迫影响马齿苋PSⅡ反应系统的正常运行.外施400 mg/L(NH4)2SO4显著提高马齿苋叶片叶绿素a含量、叶绿素b含量和叶绿素a/b比值,增强马齿苋叶片光合作用和PSⅡ原初光化学反应量子效率.对5种与光反应系统密切相关的矿质元素含量进行分析发现,Cd处理显著增加马齿苋叶片中的Ca和Fe含量,显著抑制马齿苋对Mg、Mn和Cu的吸收.Cd胁迫下马齿苋叶片的变黄与Mg、Mn的亏缺有关,而与Fe缺乏无关;添加外源S可显著提升马齿苋叶片中Ca、Mg、Fe、Cu和Mn含量,从而增强Cd胁迫下马齿苋叶片的PSII反应系统功能.  相似文献   

16.
17.
18.
To understand the role of salicylic acid (SA) in alleviating cadmium (Cd) toxicity in Kentucky bluegrass (Poa pratensis L.), we investigated the changes of biochemical and physiological indexes in five-week-old Kentucky bluegrass seedlings exposed to 0, 5, 10 or 50 μM Cd with or without 500 μM SA for 7 d. Results showed that, compared to the Cd treatment applied alone, 500 μM SA pretreatment significantly decreased Cd accumulations and increased the chlorophyll level, growth and nutrient elements content (K, Ca, Mg and Fe) in plants, accompanying with the reduction in malondialdehyde and hydrogen peroxide contents. Furthermore, SA pretreatment enhanced remarkably the superoxide dismutase, ascorbate peroxidase and peroxidase activity in the Cd-stressed plants, but decreased catalase activity. Overall, SA might regulate the antioxidant defense activities, reduce Cd uptake and stimulate nutrient elements absorption in Cd-treated with Kentucky bluegrass, thereby improving its resistance to Cd stress.  相似文献   

19.
20.
This study was carried out to investigate the effects of selenium (Se) on the uptake and translocation of cadmium (Cd) and essential elements in paddy rice (Oryza sativa L., Shuangyou 998). Selenium could alleviate/aggravate Cd toxicity in paddy rice, which depended on the dosages of Se and/or Cd. When Cd treatment level was as low as 35.6 μM, ≤12.7 μM Se could inhibit the uptake of Cd in paddy rice and increase the biomass of paddy rice; however, with Cd levels reaching 89–178 μM, the addition of Se resulted in increases in Cd uptake and exacerbated the growth of paddy rice. Cd always inhibited the uptake of Se. Cd alone suppressed the uptake of Ca, Mg, Mn, Cu, and Zn; however, Se reversed the decreases in the concentrations of the said elements, suggesting an element regulation mechanism to relieve Cd toxicity. Without Cd in the solution, low doses of Se increased the biomasses of shoots and roots at the expense of the more or less decreases in the concentrations of Ca, Mg, K, Fe, Mn, Cu, and shoot Zn, indicating an antagonistic effect of Se on these cations. The presence of Cd could also reverse these decreases especially at the highest treatment levels for both Se and Cd, also suggesting an element regulation mechanism responsible for the detoxification of high dosages of Se. Consequently, when Se is used to alleviate Cd toxicity, attention must be paid to the Cd pollution extent and doses of Se supplement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号