首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ku autoantigen is a human nuclear, DNA-binding heterodimer of 70kDa and 86kDa proteins. It is the target of autoantibodies in several autoimmune diseases. We now report the expression of a cDNA encoding the 70kDa Ku protein. Large amounts of protein were obtained using a recombinant baculovirus vector, in contrast with earlier unsuccessful attempts using other expression systems. We demonstrate that the 70kDa Ku protein is targeted to the nucleus and is associated with the nuclear matrix when expressed in the absence of the 86kDa Ku component. No post-translational modifications were observed. The 70kDa protein binds double and single-stranded DNA with very high affinity. Our results suggest that the baculovirus expression system may be of widespread use in the production and characterization of human autoantigens.  相似文献   

2.
Recombinant human interferon-alpha 2C and recombinant human interferon-gamma (5-1000 U/ml) inhibit the proliferation of normal human bone-derived cells and a human osteosarcoma cell line. In the bone-derived cells the inhibitory effect of interferon-gamma was significantly greater than that of interferon-alpha, whereas in the osteosarcoma cell line the inhibitory effects of both interferons were quantitatively similar. Interferon-alpha did not affect the alkaline phosphatase activity of either type of cells. In contrast, interferon-gamma affected the activity of the enzyme in both cell types: in the bone-derived cells the effect of interferon-gamma was stimulatory whereas in the osteosarcoma cells the effect was inhibitory. In both cell types interferon-gamma selectively inhibited the incorporation of radiolabelled proline into type I collagen. In the osteosarcoma cells, the effects of both interferons on collagen synthesis were quantitatively similar. In the bone-derived cells, however, interferon-alpha decreased proline incorporation into collagen and non-collagen proteins to a similar extent and thus did not affect collagen synthesis when expressed as a percentage of total protein synthesis. Two-dimensional polyacrylamide gel electrophoresis of the radiolabelled proteins of the cell layer synthesised by both cell types in the presence of either interferon demonstrated that this treatment enhanced or induced the synthesis of a total of 21 individual proteins (19 in bone cells, 14 in osteosarcoma), ranging in apparent molecular mass over 14-87 kDa. The set of proteins induced was different in all four combinations of cells and interferon. A tentative identification of several of the proteins was possible based upon estimation of molecular mass, preferential induction by interferon-alpha or interferon-gamma and differential induction in normal and transformed bone-derived cells. The results of this study demonstrate that interferons have complex effects upon the proliferative and biosynthetic activities of human bone-derived cells and demonstrate significant differences between the responses of normal cells and transformed bone-derived cell line. Further investigations will be required in order to determine whether or not these differences are unique to the osteosarcoma cell line or are a characteristic of the effects of interferons on bone-derived cells in general.  相似文献   

3.
Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein   总被引:5,自引:0,他引:5  
Bone sialoprotein (BSP) is a highly modified, anionic phosphoprotein that is expressed almost exclusively in mineralizing connective tissues and has been shown to be a potent nucleator of hydroxyapatite (HA). Two polyglutamic acid (poly[E]) regions, predicted to be in an alpha-helical conformation and located in the amino-terminal half of the molecule, are believed to be responsible for this activity. Using a prokaryotic expression system, full-length rat BSP was expressed and tested for HA nucleating activity in a steady-state agarose gel system. The unmodified protein is less potent than native bone BSP, indicating a role for the post-translational modifications in HA nucleation. Site-directed mutagenesis of the poly[E] regions in full-length BSP was performed, replacing the poly[E] with either polyaspartic acid (poly[D]) or polyalanine (poly[A]) to examine role of charge and conformation, respectively, in HA nucleation. Replacement of single domains with either poly[A] or poly[D] did not alter nucleating activity nor did replacement of both domains with poly[D]. Replacement of both domains with poly[A], however, significantly decreased nucleating activity. In addition, two recombinant peptides, each encompassing one of the two poly[E] domains, were expressed and tested for nucleating activity. Whereas the peptide encompassing the second poly[E] domain was capable of nucleating HA, the first domain peptide showed no activity. The conformation of the wild-type and mutated proteins and peptides were studied by circular dichroism and small angle x-ray scattering, and no secondary structure was evident. These results demonstrate that a sequence of at least eight contiguous glutamic acid residues is required for the nucleation of HA by BSP and that this nucleating "site" is not alpha-helical in conformation.  相似文献   

4.
5.
The nature and tissue distribution of non-collagenous bone proteins synthesized by adult rat bone marrow cells, induced to differentiate in the presence of dexamethasone (DEX) and beta-glycerophosphate (beta-GP), was studied in vitro to determine the potential role of these proteins in bone formation. Northern hybridization analysis revealed a strong induction of bone sialoprotein (BSP) and osteocalcin in DEX-treated cultures, whereas the constitutive expression of secreted phosphoprotein I (SPP-1), type I collagen, SPARC, and alkaline phosphatase was stimulated 6-, 5-, 3-, and 2.5-told, respectively. Metabolic labeling of proteins showed that the sialoproteins (SPP-1 and BSP) were mostly secreted into the culture medium in the non-mineralizing (-beta-GP) cultures, but were the predominant non-collagenous proteins associated with the hydroxyapatite of the bone nodules in mineralizing cultures (+ beta-GP). Extraction of the tissue matrix with 4 M GuHCl and digestion of the demineralized tissue matrix with bacterial collagenase revealed that some BSP was also associated non-covalently and covalently with the collagenous matrix. SPP-1 was present in two distinct, 44 kDa and 55 kDa, forms in the conditioned medium of all cultures and was preferentially associated with the hydroxyapatite in the mineralizing cultures. In comparison, SPARC was abundant in culture media but could not be detected in de-mineralizing extracts of the mineralized tissue. Radiolabeling with [35SO4] demonstrated that both SPP-1 and BSP synthesized by bone cells are sulfated, and that a 35 kDa protein and some proteoglycan were covalently associated with the collagenous matrix in +DEX cultures. Labeling with [32PO4] was essentially confined to the sialoproteins; the 44 kDa SPP-1 incorporating significantly more [32PO4] than the 55 kDa SPP-1 and the BSP. These studies demonstrate that BSP and osteocalcin are only expressed in differentiated osteoblasts and that most of the major non-collagenous bone proteins associate with the bone mineral. However, some novel proteins together with some of the BSP are associated with the collagenous matrix where they can influence hydroxyapatite formation.  相似文献   

6.
J Zaia  R Boynton  D Heineg?rd  F Barry 《Biochemistry》2001,40(43):12983-12991
Bone sialoprotein (BSP) is an acidic 301 amino acid protein expressed by osteoblasts and at a low level by hypertrophic chondrocytes. Its expression is highest during early stages of bone formation, and it is particularly abundant in the cells lining the surface of newly formed trabeculae. BSP contains numerous substituents which are anionic in nature and apparently essential for the function of the protein. Thus, the proposed role of BSP in hydroxyapatite nucleation and growth may depend on such modifying groups. The posttranslational modifications include several acidic oligosaccharides as well as phosphate and sulfate groups. This work combines matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry with selective enzyme treatment of BSP to provide new information on the precise distribution and structure of oligosaccharides, sulfate, and phosphate groups in BSP isolated from human bone. The results provide a high level of detail in the location of these modifying groups toward the end of providing a basis for further understanding the function of BSP in bone nucleation.  相似文献   

7.
Bone sialoprotein (BSP) is an anionic phosphorylated glycoprotein that is expressed almost exclusively in mineralized tissues and has been shown to be a potent nucleator of hydroxyapatite formation. The binding of BSP to collagen is thought to be important for the initiation of bone mineralization and in the adhesion of bone cells to the mineralized matrix. Using a solid phase assay, we have investigated the interaction between BSP and collagen. Initial studies showed that raising the ionic strength, decreasing the pH below 7, or introducing divalent cations diminishes but does not abolish the binding of BSP to collagen, indicating that the interaction is only partly electrostatic in nature. Both bone-extracted and recombinant (r)BSP exhibited similar binding affinities, indicating that post-translational modifications are not critical for binding. To identify the collagen-binding domain, recombinant peptides of BSP were studied. Peptide rBSP-(1-100) binds to type I collagen with an affinity similar to that of full-length rBSP, whereas peptides containing the sequences 99-201 or 200-301 do not bind. Further studies showed that rBSP-(1-75) competitively inhibits the binding of rBSP-(1-100), whereas rBSP-(21-100) inhibits binding to a lesser extent, and rBSP-(43-100) does not inhibit binding. These results suggest that the collagen-binding site of rat BSP is within the sequence 21-42, with residues N-terminal of this region likely also involved. This site was confirmed by the demonstration of collagen-binding activity of a synthetic peptide corresponding to residues 19-46. The collagen-binding domain, which is highly conserved among species, is enriched in hydrophobic residues and lacks acidic residues. We conclude that residues 19-46 of BSP represent a novel collagen-binding site.  相似文献   

8.
Glycosylation is one of the most complex post-translational modifications and may have significant influence on the proper function of the corresponding proteins. Bacteria and yeast are, because of easy handling and cost reasons, the most frequently used systems for recombinant protein expression. Bacteria generally do not glycosylate proteins and yeast might tend to hyperglycosylate. Insect cell- and mammalian cell-based expression systems are able to produce complex N-glycosylation structures but are more complex to handle and more expensive. The nonpathogenic protozoa Leishmania tarentolae is an easy-to-handle alternative expression system for production of proteins requiring the eukaryotic protein folding machinery and post-translational modifications. We used and evaluated the system for the secretory expression of extracellular domains from human glycoprotein VI and the receptor for advanced glycation end products from rat. Both proteins were well expressed and homogeneously glycosylated. Analysis of the glycosylation pattern identified the structure as the conserved core pentasaccharide Man3GlcNac2.  相似文献   

9.
Two cDNA subfragments containing the cell-attachment site of human fibronectin (FN) were expressed as beta-galactosidase fusion proteins in E. coli. The products were purified to homogeneity by monoclonal antibody affinity chromatography and assayed for activity in a standard cell-adhesion assay. A fusion protein containing an 80 kDa fragment of human FN appeared functionally equivalent to intact FN purified from human plasma, whereas a truncated fusion protein of 33 kDa still containing a previously postulated cell-attachment site was approx. 50-fold less active. Our study establishes a system for analyzing adhesive protein function by DNA manipulation, rules out any major role for eukaryotic post-translational modifications in FN adhesive function, and localizes additional functional activity to a 1.3 kb region.  相似文献   

10.
A cDNA encoding the human bone sialoprotein was isolated from a lambda Zap expression library (made from cultured human bone cell poly(A)+ RNA) using radiolabeled rat bone sialoprotein cDNA (Oldberg, A., and Heinegard, D. (1988) J. Biol. Chem. 263, 19430-19432) as a probe. A 5' 1-kilobase EcoRI fragment of the purified 3-kilobase clone was sequenced and found to contain the entire protein-encoding region. The deduced protein sequence revealed a 317-amino acid protein (34,982 Da) containing a 16-amino acid hydrophobic signal sequence and a 33,352-Da protein destined to undergo extensive post-translational modifications before being secreted from the cell. A comparison of the human and rat protein sequences showed extensive (greater than 70%) amino acid identities including the Arg-Gly-Asp (RGD) tripeptide thought to confer the cell attachment activity observed previously for this protein. Also conserved were three regions rich in acidic amino acids and three regions rich in tyrosine. While all three tyrosine-rich regions appear to be composed of a nominal repeat structure, only the two carboxyl-terminal regions that flank the RGD sequence fit all three of the requirements for extensive tyrosine sulfation. Interestingly, human bone sialoprotein, whose final secreted product is approximately 50% carbohydrate, contains no cystines. Northern analysis showed that while bone cells are the major source of bone sialoprotein message production, other tissues may contain trace amounts of this message. Southern hybridization of DNA from human-rodent somatic cell hybrids that have segregated human chromosomes indicated that the gene is located on human chromosome 4. The human bone sialoprotein gene is a single copy gene unlikely to exceed 11.1 kilobases in length. No restriction fragment length polymorphisms were observed with 12 different restriction enzymes in 10 normal individuals.  相似文献   

11.
12.
Bovine BSP5 belongs to the Binder of SPerm (BSP) family. BSP5 plays a role in the bovine sperm capacitation by promoting cholesterol and phospholipid efflux. The variable N-terminal part in the BSP proteins is the uncharacterized region with no known function. Full-length, N-terminal part, and individual fibronectin type II domains of bovine BSP5 were cloned, expressed and purified from Escherichia coli. His-S tagged N-terminal part showed large variation in migration on SDS-PAGE in comparison to other constructs. Using mass spectrometry it was demonstrated that the His-S-N-terminal part has the expected molecular mass (13 kDa). The recombinant N-terminal part was sensitive to E. coli endogenous proteases during purification. Denaturing purification involving boiling lysis of cells was carried out, as the protein was thermostable. The His-S-N-terminal part lacked structure as determined by CD analysis. Bioinformatics analyses confirmed that the N-terminal part of bovine BSP5 is intrinsically disordered. In addition, bioinformatics analysis indicated that rabbit BSP and multiple forms of BSP proteins of bovine and equine species possess partially or completely disordered N-terminus. The conservation of disorder at the N-terminus in BSP members belonging to different species suggests a role in biological process such as sperm capacitation and/or sperm-egg interactions.  相似文献   

13.
We have developed a strategy to characterize protein isoforms, resulting from single-point mutations and post-translational modifications. This strategy is based on polyacrylamide gel electrophoresis separation of protein isoforms, mass spectrometry (MS) and MSn analyses of intact proteins, and tandem MS analyses of proteolytic peptides. We extracted protein isoforms from polyacrylamide gels by passive elution using SDS, followed by nanoscale hydrophilic phase chromatography for SDS removal. We performed electrospray ionization MS analyses of the intact proteins to determine their molecular mass, allowing us to draw hypotheses on the nature of the modification. In the case of labile post-translational modifications, like phosphorylations and glycosylations, we conducted electrospray ionization MSn analyses of the intact proteins to confirm their presence. Finally, after digestion of the proteins in solution, we performed tandem MS analyses of the modified peptides to locate the modifications. Using this strategy, we have determined the molecular mass of 5-10 pmol of a protein up to circa 50 kDa loaded on a gel with a 0.01% mass accuracy. The efficiency of this approach for the characterization of protein variants and post-translational modifications is illustrated with the study of a mixture of kappa-casein isoforms, for which we were able to identify the two major variants and their phosphorylation site and glycosylation motif. We believe that this strategy, which combines two-dimensional gel electrophoresis and mass spectrometric analyses of gel-eluted intact proteins using a benchtop ion trap mass spectrometer, represents a promising approach in proteomics.  相似文献   

14.
Bovine seminal plasma (BSP) contains a family of major proteins designated BSP-A1/A2, BSP-A3, and BSP-30kDa (collectively called BSP proteins) that bind to sperm at ejaculation and potentiate sperm capacitation. Homologous proteins have been identified in stallion, boar, goat, and ram seminal plasma. We report here the isolation and characterization of homologous proteins from bison seminal vesicle secretions. Seminal vesicle secretory proteins were precipitated by adding cold ethanol and recovered by centrifugation. The precipitates were resuspended in ammonium bicarbonate, dialyzed, and lyophilized. Lyophilized proteins were dissolved in 0.05 M phosphate buffer (PB) and loaded onto a gelatin-agarose column. The unadsorbed proteins and adsorbed proteins were eluted with PB and 5 M urea in PB, respectively. The gelatin-adsorbed fraction was analyzed by SDS-PAGE and revealed the presence of four major proteins designated BiSV-16kDa, BiSV-17kDa, BiSV-18kDa, and BiSV-28kDa (BiSV: bison seminal vesicle proteins). Heparin-Sepharose chromatography allowed the separation of BiSV-16kDa, which did not bind heparin from other BiSV proteins, which bound heparin. Immunoblotting revealed that BiSV-16kDa cross-reacted with BSP-A3 antibodies, BiSV-17kDa and BiSV-18kDa cross-reacted with BSP-A1/-A2 antibodies, and BiSV-28kDa cross-reacted with BSP-30kDa antibodies. Radioimmunoassays indicated that approximately 25% of bison seminal vesicle total proteins are related to BSP proteins. The amino-terminal sequencing indicated that BiSV proteins share almost 100% sequence identity with BSP proteins. In addition, BiSV proteins bind to low-density lipoproteins isolated from hen's egg yolk. These results confirm that BSP protein homologs are present in mammalian seminal plasma and they may share the same biological role.  相似文献   

15.
In previous studies we have shown that seminal plasma (SP) proteins can prevent and repair cold-shock membrane damage to ram spermatozoa. Three proteins of approximately 14, 20 and 22 kDa, mainly responsible for this protective ability, were identified in ram SP. They are exclusively synthesized in the seminal vesicles and, consequently, named RSVP14, RSVP20 and RSVP22. The aim of this study is to characterize and express the RSVP14 gene to provide new insights into the mechanisms through which SP proteins are able to protect spermatozoa. Additionally, a first approach has been made to the recombinant protein production. The cDNA sequence obtained encodes a 129 amino acid chain and presents a 25-amino acid signal peptide, one potential O-linked glycosylation site and seven phosphorylation sites on tyrosine, serine and threonine residues. The sequence contains two FN-2 domains, the signature characteristic of the bovine seminal plasma (BSP) protein family and related proteins of different species. More interestingly, it was shown that RSVP14 contains four disulphide bonds and a cholesterol recognition/interaction amino acid consensus (CRAC) domain, also found in BSP and similar proteins. Analysis of the relationships between RSVP14 and other mammalian SP proteins revealed a 76–85% identity, particularly with the BSP protein family. The recombinant protein was obtained in insect cell extracts and in Escherichia coli in which RSVP14 was detected in both the pellet and the supernatant. The results obtained corroborate the role of RSVP14 in capacitation and might explain its protective effect against cold-shock injury to the membranes of ram spermatozoa. Furthermore, the biochemical and functional similarities between RSVP14 and BSP proteins suggest that it might play a similar role in sperm functionality.  相似文献   

16.
Glycosylation, the addition of covalently linked sugars, is a major post-translational modification of proteins that can significantly affect processes such as cell adhesion, molecular trafficking, clearance, and signal transduction. In eukaryotes, the most common glycosylation modifications in the secretory pathway are additions at consensus asparagine residues (N-linked); or at serine or threonine residues (O-linked) (Figure 1). Initiation of N-glycan synthesis is highly conserved in eukaryotes, while the end products can vary greatly among different species, tissues, or proteins. Some glycans remain unmodified ("high mannose N-glycans") or are further processed in the Golgi ("complex N-glycans"). Greater diversity is found for O-glycans, which start with a common N-Acetylgalactosamine (GalNAc) residue in animal cells but differ in lower organisms. The detailed analysis of the glycosylation of proteins is a field unto itself and requires extensive resources and expertise to execute properly. However a variety of available enzymes that remove sugars (glycosidases) makes possible to have a general idea of the glycosylation status of a protein in a standard laboratory setting. Here we illustrate the use of glycosidases for the analysis of a model glycoprotein: recombinant human chorionic gonadotropin beta (hCGβ), which carries two N-glycans and four O-glycans. The technique requires only simple instrumentation and typical consumables, and it can be readily adapted to the analysis of multiple glycoprotein samples. Several enzymes can be used in parallel to study a glycoprotein. PNGase F is able to remove almost all types of N-linked glycans. For O-glycans, there is no available enzyme that can cleave an intact oligosaccharide from the protein backbone. Instead, O-glycans are trimmed by exoglycosidases to a short core, which is then easily removed by O-Glycosidase. The Protein Deglycosylation Mix contains PNGase F, O-Glycosidase, Neuraminidase (sialidase), β1-4 Galactosidase, and β-N-Acetylglucosaminidase. It is used to simultaneously remove N-glycans and some O-glycans. Finally, the Deglycosylation Mix was supplemented with a mixture of other exoglycosidases (α-N-Acetylgalactosaminidase, α1-2 Fucosidase, α1-3,6 Galactosidase, and β1-3 Galactosidase), which help remove otherwise resistant monosaccharides that could be present in certain O-glycans. SDS-PAGE/Coomasie blue is used to visualize differences in protein migration before and after glycosidase treatment. In addition, a sugar-specific staining method, ProQ Emerald-300, shows diminished signal as glycans are successively removed. This protocol is designed for the analysis of small amounts of glycoprotein (0.5 to 2 μg), although enzymatic deglycosylation can be scaled up to accommodate larger quantities of protein as needed.  相似文献   

17.
Among the vitamin K-dependent plasma proteins, only protein S contains the post-translationally modified amino acid erythro-beta-hydroxyasparagine (Hyn). Protein S also contains erythro-beta-hydroxyaspartic acid (Hya). The function of these unusual amino acids, located in the epidermal growth factor-like domains, is unknown. To determine if these post-translational modifications contribute to the functional integrity of human protein S (HPS), recombinant human protein S lacking Hya and Hyn (rHPSdesHya/Hyn) was purified from the medium of human kidney 293 cells that were transfected with HPS cDNA and grown in the presence of the hydroxylase inhibitor 2,2'-dipyridyl. Solution-phase equilibrium binding studies revealed that rHPSdesHya/Hyn binds C4b-binding protein (C4BP) in a manner indistinguishable from recombinant HPS and plasma-derived HPS, exhibiting a Kd in the presence of 2 mM CaCl2 of approximately 0.7 nM and a Kd in the presence of 4 mM EDTA approximately 10-fold higher. In a purified component system, rHPSdesHya/Hyn displayed normal anticoagulant cofactor activity in the activated protein C-catalyzed inactivation of coagulation factor Va bound in the prothrombinase complex. In addition, digestion of rHPSdesHya/Hyn with thrombin in the presence of EDTA appeared normal, and 2 mM CaCl2 prevented the cleavage. Together these results suggest that the post-translational modifications of Asn and Asp residues are not necessary for the macromolecular or Ca2+ interactions associated with the anticoagulant and C4BP binding characteristics of HPS.  相似文献   

18.
To study the role of noncollagenous proteins in bone formation, the synthesis and tissue distribution of BSP (bone sialoprotein), OPN (osteopontin) and SPARC (secreted protein acidic and rich in cysteine) were analyzed using pulse-chase and continuous labeling protocols during bone formation by cultures of rat calvarial cells. Following a 1 h labeling period with [35S]methionine or [35SO4], radiolabeled BSP was rapidly lost from the cells and appeared transiently in the culture medium and in a 4 M GuHCl extract (G1) of the mineralized tissue. Coinciding with the loss of BSP from these compartments, radiolabeled BSP increased in demineralizing, 0.5 M EDTA extracts (E) of the bone, in a subsequent GuHCl extract (G2), and in a bacterial collagenase digest (CD fraction) of the extracted tissue, over a 24 h chase period. In comparison, the 55 kDa form of OPN, with a small amount of the 44 kDa OPN, was secreted almost entirely into the culture medium. Most of the 44 kDa OPN, together with some 55 kDa OPN, accumulated rapidly in the E extract but could not be detected in either G extract or in the CD fraction. SPARC appeared transiently in the G1 extract, but was otherwise quantitatively secreted into the culture medium from where it was lost by complexing and/or degradation. When cultures were continuously labeled over a 12 day period with [35S]methionine, radiolabeled BSP and 44 kDa OPN accumulated in the E extract together with a small amount of SPARC. Some radiolabeled BSP also accumulated in the G2 extract. From the relative incorporation of [35SO4] over the same time period, a time-dependent loss in sulphate from the BSP was evident. Using a 24 h pulse-labeling protocol, the amount of radiolabeled BSP and OPN in the E extract and the BSP in the G2 extract were not altered significantly over a 12-day chase period. These studies demonstrate that the 44 kDa OPN and most of the BSP are rapidly bound to the hydroxyapatite crystals where they may regulate crystal formation and growth during bone formation. Some BSP is deposited in the osteoid and appears to become masked by the formation of hydroxyapatite, indicating a potential role for this protein in epitactic nucleation of hydroxyapatite crystal formation.  相似文献   

19.
The modification of glutamic acid residues to gamma-carboxyglutamic acid (Gla) is a post-translational modification catalyzed by the vitamin K-dependent enzyme gamma-glutamylcarboxylase. Despite ubiquitous expression of the gamma-carboxylation machinery in mammalian tissues, only 12 Gla-containing proteins have so far been identified in humans. Because bone tissue is the second most abundant source of Gla-containing proteins after the liver, we sought to identify Gla proteins secreted by bone marrow-derived mesenchymal stromal cells (MSCs). We used a proteomics approach to screen the secretome of MSCs with a combination of two-dimensional gel electrophoresis and tandem mass spectrometry. The most abundant Gla-containing protein secreted by MSCs was identified as periostin, a previously unrecognized gamma-carboxylated protein. In silico amino acid sequence analysis of periostin demonstrated the presence of four consensus gamma-carboxylase recognition sites embedded within fasciclin-like protein domains. The carboxylation of periostin was confirmed by immunoprecipitation and purification of the recombinant protein. Carboxylation of periostin could be inhibited by warfarin in MSCs, demonstrating its dependence on the presence of vitamin K. We were able to demonstrate localization of carboxylated periostin to bone nodules formed by MSCs in vitro, suggesting a role in extracellular matrix mineralization. Our data also show that another fasciclin I-like protein, betaig-h3, contains Gla. In conclusion, periostin is a member of a novel vitamin K-dependent gamma-carboxylated protein family characterized by the presence of fasciclin domains. Furthermore, carboxylated periostin is produced by bone-derived cells of mesenchymal lineage and is abundantly found in mineralized bone nodules in vitro.  相似文献   

20.
Affinity purification is a useful approach for purification of recombinant proteins. Eukaryotic expression systems have become more frequently used at the expense of prokaryotic systems since they afford recombinant eukaryotic proteins with post-translational modifications similar or identical to the native ones. Here, we present a one-step affinity purification set-up suitable for the purification of secreted proteins. The set-up is based on the interaction between biotin and mutated streptavidin. Drosophila Schneider 2 cells are chosen as the expression host, and a biotin acceptor peptide is used as an affinity tag. This tag is biotinylated by Escherichia coli biotin-protein ligase in vivo. We determined that localization of the ligase within the ER led to the most effective in vivo biotinylation of the secreted proteins. We optimized a protocol for large-scale expression and purification of AviTEV-tagged recombinant human glutamate carboxypeptidase II (Avi-GCPII) with milligram yields per liter of culture. We also determined the 3D structure of Avi-GCPII by X-ray crystallography and compared the enzymatic characteristics of the protein to those of its non-tagged variant. These experiments confirmed that AviTEV tag does not affect the biophysical properties of its fused partner. Purification approach, developed here, provides not only a sufficient amount of highly homogenous protein but also specifically and effectively biotinylates a target protein and thus enables its subsequent visualization or immobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号