首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenomena involving the disassembly of chromosomes to ∼50 kbp double-stranded fragments upon protein denaturing treatments of normal and apoptotic mammalian nuclei as well as yeast protoplasts may be an indication of special, hypersensitive regions positioned regularly at loop-size intervals in the eukaryotic chromatin. Here we show evidence in yeast cell systems that loop-size fragmentation can occur in any phase of the cell cycle and that the plating efficiency of these cells is ∼100%. The possibility of sequence specificity was investigated within the breakpoint cluster region (bcr) of the human MLL gene, frequently rearranged in certain leukemias. Our data suggest that DNA isolated from yeast cultures or mammalian cell lines carry nicks or secondary structures predisposing DNA for a specific nicking activity, at non-random positions. Furthermore, exposure of MLL bcr-carrying plasmid DNA to S1 nuclease or nuclear extracts or purified topoisomerase II elicited cleavages at the nucleotide positions of nick formation on human genomic DNA. These data support the possibility that certain sequence elements are preferentially involved in the cleavage processes responsible for the en masse disassembly of chromatin to loop-size fragments upon isolation of DNA from live eukaryotic cells.  相似文献   

2.
X;autosome translocations in females with Duchenne muscular dystrophy (DMD) provide an opportunity to study the mechanisms responsible for chromosomal rearrangements that occur in the germ line. We describe here a detailed molecular analysis of the translocation breakpoints of an X;autosome reciprocal translocation, t(X;5)(p21;q31.1), in a female with DMD. Cosmid clones that contained the X-chromosome breakpoint region were identified, and subclones that hybridized to the translocation junction fragment in restriction digests of the patient's DNA were isolated and sequenced. Primers designed from the X-chromosomal sequence were used to obtain the junction fragments on the der(X) and the der(5) by inverse PCR. The resultant clones were also cloned and sequenced, and this information used to isolate the chromosome 5 breakpoint region. Comparison of the DNA sequences of the junction fragments with those of the breakpoint regions on chromosomes X and 5 revealed that the translocation arose by nonhomologous recombination with an imprecise reciprocal exchange. Four and six base pairs of unknown origin are inserted at the exchange points of the der(X) and der(5), respectively, and three nucleotides are deleted from the X-chromosome sequence. Two features were found that may have played a role in the generation of the translocation. These were (1) a repeat motif with an internal homopyrimidine stretch 10 bp upstream from the X-chromosome breakpoint and (2) a 9-bp sequence of 78% homology located near the breakpoints on chromosomes 5 and X.  相似文献   

3.
Analysis of 22 deletion breakpoints in dystrophin intron 49   总被引:9,自引:0,他引:9  
Over 60% of Duchenne and Becker muscular dystrophies are caused by deletions spanning tens or hundreds of kilobases in the dystrophin gene. The molecular mechanisms underlying the loss of DNA at this genomic locus are not yet understood. By studying the distribution of deletion breakpoints at the genomic level, we have previously shown that intron 49 exhibits a higher relative density of breakpoints than most dystrophin introns. To determine whether the mechanisms leading to deletions in this intron preferentially involve specific sequence elements, we sublocalized 22 deletion endpoints along its length by a polymerase-chain-reaction-based approach and, in particular, analyzed the nucleotide sequences of five deletion junctions. Deletion breakpoints were homogeneously distributed throughout the intron length, and no extensive homology was observed between the sequences adjacent to each breakpoint. However, a short sequence able to curve the DNA molecule was found at or near three breakpoint junctions.  相似文献   

4.
Deletion of chromosome 9p21 is a crucial event for the development of several cancers including acute lymphoblastic leukemia (ALL). Double strand breaks (DSBs) triggering 9p21 deletions in ALL have been reported to occur at a few defined sites by illegitimate action of the V(D)J recombination activating protein complex. We have cloned 23 breakpoint junctions for a total of 46 breakpoints in 17 childhood ALL (9 B- and 8 T-lineages) showing different size deletions at one or both homologous chromosomes 9 to investigate which particular sequences make the region susceptible to interstitial deletion. We found that half of 9p21 deletion breakpoints were mediated by ectopic V(D)J recombination mechanisms whereas the remaining half were associated to repeated sequences, including some with potential for non-B DNA structure formation. Other mechanisms, such as microhomology-mediated repair, that are common in other cancers, play only a very minor role in ALL. Nucleotide insertions at breakpoint junctions and microinversions flanking the breakpoints have been detected at 20/23 and 2/23 breakpoint junctions, respectively, both in the presence of recombination signal sequence (RSS)-like sequences and of other unspecific sequences. The majority of breakpoints were unique except for two cases, both T-ALL, showing identical deletions. Four of the 46 breakpoints coincide with those reported in other cases, thus confirming the presence of recurrent deletion hotspots. Among the six cases with heterozygous 9p deletions, we found that the remaining CDKN2A and CDKN2B alleles were hypermethylated at CpG islands.  相似文献   

5.
Summary We established tobacco tumour cell lines from crown galls induced by Agrobacterium. Restriction fragments containing T-DNA/plant DNA junctions were cloned from one of the cell lines, which has a single copy of the T-DNA in a unique region of its genome. We also isolated a DNA fragment that contained the integration target site from nontransformed tobacco cells. Nucleotide sequence analyses showed that the right and left breakpoints of the T-DNA mapped ca. 7.3 kb internal to the right 25 by border and ca. 350 by internal to the left border respectively. When the nucleotide sequences around these breakpoints were compared with the sequence of the target, significant homology was seen between the region adjacent to the integration target site and both external regions of the T-DNA breakpoints. In addition, a short stretch of plant DNA in the vicinity of the integration site was deleted. This deletion seems to have been promoted by homologous recombination between short repeated sequences that were present on both sides of the deleted stretch. Minor rearrangements, which included base substitutions, insertions and deletions, also took place around the integration site in the plant DNA. These results, together with previously reported results showing that in some cases sequences homologous to those in T-DNA are present in plant DNA regions adjacent to left recombinational junctions, indicate that sequence homology between the incoming T-DNA and the plant chromosomal DNA has an important function in T-DNA integration. The homology may promote close association of both termini of a T-DNA molecule on a target sequence; then TDNA may in some cases be integrated by a mechanism at least in part analogous to homologous recombination.Shogo Matsumoto is on leave from Biochemical Research Institute, Nippon Menard Cosmetic Co., Ltd, Ogaki, Gifu-ken 503, Japan  相似文献   

6.
In vitro, misalignments of the newly synthesized (primer) strand during DNA polymerization lead to deletion and/or complex frameshift mutations. In vivo, similar misalignments of repeated and quasipalindromic DNA sequences are predicted to be intermediates of mutagenesis. The mutagenic misalignments are mediated by complementary pairing between the sequence at the 3'-OH end of the newly synthesized DNA strand and sequences in the template or in the newly synthesized DNA. Mutant sequences are produced when the misaligned primers act as substrates for DNA polymerization. The misalignments responsible for detected mutant sequences were compared to similar misalignments that were not implicated in mutagenesis, and all misalignment possibilities were compared to the position of pausing during polymerization by Escherichia coli polymerase I or its Klenow fragment. These comparisons revealed three characteristics of in vitro misalignment specificity. First, the termini produced by pausing are likely to be precursors to mutagenic misalignments. Second, the absence of some potential misalignments from the detected spectrum is explained well by the predicted undetectability of the mutant sequences they produce. Third, factors distinct from pausing and mutant detectability are responsible for differences in the specificity of misalignment mutagenesis mediated by E. coli DNA polymerase I and Klenow polymerase during in vitro synthesis.  相似文献   

7.
A sequence of 1019 nucleotides encompassing one of the 600 base inverted repeats and non-repeated flanking regions has been determined in the type A yeast 2 micrometers plasmid cloned in pMB9. Methods are described for applying the Maxam-Gilbert sequencing procedure to DNA fragments labelled at the 3'-end using a T4-polymerase exchange/repair reaction and for sequencing 5'-end labelled fragments using dideoxy-nucleotides as chain terminators in the presence of E. coli DNA polymerase (nach Klenow). A notable feature of the sequence is its unusual content of symmetry elements. In one region of 140 nucleotides, 137 are involved in a complex arrangement of direct and inverted repeats linked by palindromic sequences.  相似文献   

8.
T Meitinger  Y Boyd  R Anand  I W Craig 《Genomics》1988,3(4):315-322
Balanced translocations with a breakpoint in the Xp21 region are likely to disrupt the giant Duchenne muscular dystrophy (DMD) locus and can be demonstrated in females suffering from the disease. Pulsed field gel electrophoresis allows the positioning of these breakpoints by detecting junction fragments on the derived chromosomes; DNA probes hybridizing to these fragments may be located as many as several hundred kilobases away from the breakpoints. By using this approach, 11 translocation breakpoints from the Xp21 region have been analyzed. The localization of three previously examined breakpoints was confirmed. Six other breakpoints, including a breakpoint flanking the DMD gene and not associated with the DMD phenotype, could be positioned relative to SfiI sites on a 3.5-Mb restriction map of the region.  相似文献   

9.
The breakpoint regions of both translocation products of the (9;22) Philadelphia translocation of CML patient 83-H84 and their normal chromosome 9 and 22 counterparts have been cloned and analysed. Southern blotting with bcr probes and DNA sequencing revealed that the breaks on chromosome 22 occurred 3' of bcr exon b3 and that the 88 nucleotides between the breakpoints in the chromosome 22 bcr region were deleted. Besides this small deletion of chromosome 22 sequences a large deletion of chromosome 9 sequences (greater than 70 kb) was observed. The chromosome 9 sequences remaining on the 9q+ chromosome (9q+ breakpoint) are located at least 100 kb upstream of the v-abl homologous c-abl exons whereas the translocated chromosome 9 sequences (22q-breakpoint) could be mapped 30 kb upstream of these c-abl sequences. The breakpoints were situated in Alu-repetitive sequences either on chromosome 22 or on chromosome 9, strengthening the hypothesis that Alu-repetitive sequences can be hot spots for recombination.  相似文献   

10.
Matzkin LM  Merritt TJ  Zhu CT  Eanes WF 《Genetics》2005,170(3):1143-1152
We report here the breakpoint structure and sequences of the Drosophila melanogaster cosmopolitan chromosomal inversion In(3R)P. Combining in situ hybridization to polytene chromosomes and long-range PCR, we have identified and sequenced the distal and proximal breakpoints. The breakpoints are not simple cut-and-paste structures; gene fragments and small duplications of DNA are associated with both breaks. The distal breakpoint breaks the tolkin (tok) gene and the proximal breakpoint breaks CG31279 and the tolloid (tld) gene. Functional copies of all three genes are found at the opposite breakpoints. We sequenced a representative sample of standard (St) and In(3R)P karyotypes for a 2-kb portion of the tok gene, as well as the same 2 kb from the pseudogene tok fragment found at the distal breakpoint of In(3R)P chromosomes. The tok gene in St arrangements possesses levels of polymorphism typical of D. melanogaster genes. The functional tok gene associated with In(3R)P shows little polymorphism. Numerous single-base changes, as well as deletions and duplications, are associated with the truncated copy of tok. The overall pattern of polymorphism is consistent with a recent origin of In(3R)P, on the order of Ne generations. The identification of these breakpoint sequences permits a simple PCR-based screen for In(3R)P.  相似文献   

11.
Constitutional chromosomal translocations are relatively common causes of human morbidity, yet the DNA double-strand break (DSB) repair mechanisms that generate them are incompletely understood. We cloned, sequenced and analyzed the breakpoint junctions of a familial constitutional reciprocal translocation t(9;11)(p24;q23). Within the 10-kb region flanking the breakpoints, chromosome 11 had 25% repeat elements, whereas chromosome 9 had 98% repeats, 95% of which were L1-type LINE elements. The breakpoints occurred within an L1-type repeat element at 9p24 and at the 3'-end of an Alu sequence at 11q23. At the breakpoint junction of derivative chromosome 9, we discovered an unusually large 41-bp insertion, which showed 100% identity to 12S mitochondrial DNA (mtDNA) between nucleotides 896 and 936 of the mtDNA sequence. Analysis of the human genome failed to show the preexistence of the inserted sequence at normal chromosomes 9 and 11 breakpoint junctions or elsewhere in the genome, strongly suggesting that the insertion was derived from human mtDNA and captured into the junction during the DSB repair process. To our knowledge, these findings represent the first observation of spontaneous germ line insertion of modern human mtDNA sequences and suggest that DSB repair may play a role in inter-organellar gene transfer in vivo. Our findings also provide evidence for a previously unrecognized insertional mechanism in human, by which non-mobile extra-chromosomal fragments can be inserted into the genome at DSB repair junctions.  相似文献   

12.
When chromosomes are broken, the breakpoints become highly unstable and acquire the ability to fuse with other broken ends. The breakpoints are, however, eventually stabilized, and, therefore, the broken chromosomes are transmitted to the daughter cells without further morphological change. This phenomenon, known as “healing of breakpoints”, involves the addition of repetitive telomere sequences at the breakpoints by telomerase, the enzyme that normally synthesizes the telomere sequence at normal chromosome terminals. In many higher organisms, however, this property has not been well investigated. In this study, we examined the telomere sequences in wheat deletion lines with breakpoints on chromosome 1B. Lines that had breakpoints around the nucleolar organizer region were first selected on the basis of cytological observations, and the precise breakpoints were determined by mapping a fragment of rDNA and RFLP markers. In three lines – in addition to one previously reported – the DNA fragments encompassing the breakpoints were amplified by PCR using primers located in the rDNA and in telomere sequences. The DNA sequences provide insight into the properties of the telomerase activity at the breakpoints. The telomere sequences initiated from 2- to 4-nucleotide motifs in the original ribosomal DNA sequence which are also found in the repeat unit characteristic of telomere sequences. No specific sequences or structures were observed at or around the breakpoints. At all of the four breakpoints investigated, the newly synthesized telomere sequences contained considerable numbers of atypical telomere sequence units, particularly TTAGGG, which is the common unit of mammalian telomere sequences. Based on these results, we discuss the ability of plant telomerase to initiate the de novo synthesis of telomere sequences at internal breakpoints. Received: 15 June 1999 / Accepted: 6 August 1999  相似文献   

13.
We have characterized the heterogeneity occurring at the junction of the long (L) and short (S) segments and at the termini of the strain AD169 human cytomegalovirus (HCMV) genome by restriction endonuclease mapping and nucleotide sequence analyses. The HCMV a sequence was identified by its position at both termini and inverted orientation at the L-S junction. Heterogeneity at both termini and the L-S junction was generated by the presence of fused and tandem a sequences. Some S termini lacked an a sequence. In addition, near the L terminus and at the L-S junction there were a variable number of 217-base-pair (bp) XhoI fragments arranged in tandem. The 217-bp fragments consisted of a portion of the a and adjacent b sequences (in the L-segment repeat) bounded by the same direct repeats (DR1) found at the boundaries of the a sequence. A model for the generation of these heterogeneous fragments is presented. We also determined the sequence of seven cloned terminal fragments, five from the L terminus and two from the S terminus. All L termini contained identical terminal sequences ending with base 32 of a 33-bp DR1. The S termini differed from each other and from the L-segment termini. One S terminus lacked an a sequence and terminated within S-segment repeat (c) sequences. The second S terminus contained an a sequence and terminated with bases 20 to 33 of a 33-bp DR1. A comparison of the cloned L and S terminal sequences with cloned L-S junction sequences suggested that the termini contained 3' single base extensions which were removed during the cloning. We also show that the herpesvirus conserved sequence is in a similar position relative to the termini of HCMV and several other herpesviruses, thus adding further support for the role of the sequence in the maturation of viral DNA.  相似文献   

14.
15.
Bacteriophage P1 initiates the processive packaging of its DNA at a unique site called pac. We show that a functional pac site is contained within a 161 base-pair segment of P1 EcoRI fragment 20. It extends from a position 71 base-pairs to a position 232 base-pairs from the EcoRI-22 proximal side of that fragment. The 3' and 5' pac termini are located centrally within that 161 base-pair region and are distributed over about a turn of the DNA helix. The DNA sequence of the terminus region is shown below, with the large arrows indicating the positions of termini that are frequently represented in the PI population and the small arrows indicating the positions of termini that are rarely represented in the P1 population. (Sequence: in text). Digestion of P1 virus DNA with EcoRI generates two major EcoRI-pac fragments, which differ in size by about five or six base-pairs. While the structure and position of the double-stranded pac ends of these fragments have not been determined precisely, the 5' termini at those ends probably correspond to the two major pac cleavage sites in the upper strand of the sequences shown above. The 161 base-pair pac site contains the hexanucleotide sequence 5'-TGATCAG-3' repeated four times at one end and three times at the other. Removal of just one of those elements from either the right or left ends of pac reduces pac cleavage by about tenfold. Moreover, the elements appear to be additive in their effect on pac cleavage, as removal of one and a half elements or all three elements from the right side of pac reduces pac cleavage 100-fold, and greater than 1000-fold, respectively.  相似文献   

16.
Recently, we have found an allelic deletion of the secretor alpha(1,2)fucosyltransferase (FUT2) gene in individuals with the classical Bombay phenotype of the ABO system. The FUT2 gene consists of two exons separated by an intron that spans approximately 7 kb. The first exon is noncoding, whereas exon 2 contains the complete coding sequence. Since the 5' breakpoint of the deletion has previously been mapped to the single intron of FUT2, we have cloned the junction region of the deletion in a Bombay individual by cassette-mediated polymerase chain reaction. In addition, the region from the 3' untranslated region of FUT2 to the 3' breakpoint sequence has been amplified from a control individual. DNA sequence analysis of this region indicates that the 5' breakpoint is within a free left Alu monomer (FLAM-C) sequence that lies 1.3 kb downstream of exon 1, and that the 3' breakpoint is within a complete Alu element (AluSx) that is positioned 1.5 kb downstream of exon 2. The size of the deletion is estimated to be about 10 kb. There is a 25-bp sequence identity between the reference DNA sequences surrounding the 5' and 3' breakpoints. This demonstrates that an Alu-mediated large gene deletion generated by unequal crossover is responsible for secretor alpha(1,2)fucosyltransferase deficiency in Indian Bombay individuals.  相似文献   

17.
The nucleotide sequence at the termini of adenovirus type 5 DNA.   总被引:26,自引:7,他引:26       下载免费PDF全文
The sequences of the first 194 base pairs at both termini of adenovirus type 5 (Ad5) DNA have been determined, using the chemical degradation technique developed by Maxam and Gilbert (Proc. Nat. Acad. Sci. USA 74 (1977), pp. 560-564). The nucleotide sequences 1-75 were confirmed by analysis of labeled RNA transcribed from the terminal HhaI fragments in vitro. The sequence data show that Ad5 DNA has a perfect inverted terminal repetition of 103 base pairs long.  相似文献   

18.
19.
Interstitial deletions of the short arm of chromosome 9 are associated with glioma, acute lymphoblastic leukemia, melanoma, mesothelioma, lung cancer, and bladder cancer. The distal breakpoints of the deletions (in relation to the centromere) in 14 glioma and leukemia cell lines have been mapped within the 400 kb IFN gene cluster located at band 9p21. To obtain information about the mechanism of these deletions, we have isolated and analyzed the nucleotide sequences at the breakpoint junctions in two glioma-derived cell lines. The A1235 cell line has a complex rearrangement of chromosome 9, including a deletion and an inversion that results in two breakpoint junctions. Both breakpoints of the distal inversion junction occurred within AT-rich regions. In the A172 cell line, a tandem heptamer repeat was found on either side of the deletion breakpoint junction. The distal breakpoint occurred 5' of IFNA2; the 256 bp sequenced from the proximal side of the breakpoint revealed 95% homology to long interspersed nuclear elements. One- and two-base-pair overlaps were observed at these junctions. The possible role of sequence overlaps, and repetitive sequences, in the rearrangement is discussed.  相似文献   

20.
Chromosome breakage in germline and somatic genomes gives rise to copy number variation (CNV) responsible for genomic disorders and tumorigenesis. DNA sequence is known to play an important role in breakage at chromosome fragile sites; however, the sequences susceptible to double-strand breaks (DSBs) underlying CNV formation are largely unknown. Here we analyze 140 germline CNV breakpoints from 116 individuals to identify DNA sequences enriched at breakpoint loci compared to 2800 simulated control regions. We find that, overall, CNV breakpoints are enriched in tandem repeats and sequences predicted to form G-quadruplexes. G-rich repeats are overrepresented at terminal deletion breakpoints, which may be important for the addition of a new telomere. Interstitial deletions and duplication breakpoints are enriched in Alu repeats that in some cases mediate non-allelic homologous recombination (NAHR) between the two sides of the rearrangement. CNV breakpoints are enriched in certain classes of repeats that may play a role in DNA secondary structure, DSB susceptibility and/or DNA replication errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号