首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of mAbs to abrogate costimulatory interactions has attracted much attention with regard to prevention and modulation of adverse (auto)immune-like reactions. However, the role of costimulatory molecules and possible therapeutic use of Ab-treatment in drug-induced immunostimulation is poorly elucidated. In the present studies, we show that CD28/CTLA-4-CD80/CD86 costimulatory interactions differently regulate drug-induced type 1 and type 2 responses to an identical bystander Ag, TNP-OVA, in BALB/c mice using the reporter Ag popliteal lymph node assay. The antirheumatic drug D-Penicillamine, which may induce lupus-like side-effects, stimulated type 2 responses against TNP-OVA, characterized by the production of IL-4 and TNP-specific IgG1 and IgE. These responses were abrogated in CD80/CD86-deficient mice and in wild-type mice that were treated with anti-CD80 and anti-CD86, or CTLA-4-Ig. Anti-CTLA-4 intensively enhanced the D-Penicillamine-induced effects. In contrast, the type 1 response (IFN-gamma, TNF-alpha, IgG2a) to TNP-OVA induced by the diabetogen streptozotocin still developed in the absence of CD80/CD86 costimulatory signaling. In addition, it was demonstrated that coadministration of anti-CD80 and anti-CD86 mAbs slightly enhanced streptozotocin-induced type 1 responses, whereas the CTLA-4-Ig fusion protein completely abrogated this response. In conclusion, different drugs may stimulate distinct types of immune responses against an identical bystander Ag, which are completely dependent on (type 2) or independent of (type 1) the CD28/CTLA-4-CD80/CD86 pathway. Importantly, the effects of treatment with anti-CD80/CD86 mAbs and CTLA-4-Ig may be considerably different in responses induced by distinct drugs.  相似文献   

2.
Valpha14 NKT cells produce large amounts of IFN-gamma and IL-4 upon recognition of their specific ligand alpha-galactosylceramide (alpha-GalCer) by their invariant TCR. We show here that NKT cells constitutively express CD28, and that blockade of CD28-CD80/CD86 interactions by anti-CD80 and anti-CD86 mAbs inhibits the alpha-GalCer-induced IFN-gamma and IL-4 production by splenic Valpha14 NKT cells. On the other, the blockade of CD40-CD154 interactions by anti-CD154 mAb inhibited alpha-GalCer-induced IFN-gamma production, but not IL-4 production. Consistent with these findings, CD28-deficient mice showed impaired IFN-gamma and IL-4 production in response to alpha-GalCer stimulation in vitro and in vivo, whereas production of IFN-gamma but not IL-4 was impaired in CD40-deficient mice. Moreover, alpha-GalCer-induced Th1-type responses, represented by enhanced cytotoxic activity of splenic or hepatic mononuclear cells and antimetastatic effect, were impaired in both CD28-deficient mice and CD40-deficient mice. In contrast, alpha-GalCer-induced Th2-type responses, represented by serum IgE and IgG1 elevation, were impaired in the absence of the CD28 costimulatory pathway but not in the absence of the CD40 costimulatory pathway. These results indicate that CD28-CD80/CD86 and CD40-CD154 costimulatory pathways differentially contribute to the regulation of Th1 and Th2 functions of Valpha14 NKT cells in vivo.  相似文献   

3.
Co-stimulation blockade can be used to modulate the immune response for induction of organ transplantation tolerance, treatment of autoimmune disease as well as cancer treatment. Cytotoxic T-Lymphocyte Antigen-4 (CTLA-4), also known as CD152, is an important co-stimulatory molecule which serves as a negative regulator for T cell proliferation and differentiation. CTLA-4/CD28-CD80/CD86 pathway is a critical co-stimulatory pathway for adaptive immune response. T cell activation through the T cell receptor and CD28 leads to increased expression of CTLA-4, an inhibitory receptor for CD80 and CD86. MGH MHC-defined miniature swine provide a unique large animal model useful for preclinical studies of transplantation tolerance and immune regulation. In this study, we have expressed the codon-optimized soluble porcine CTLA-4 in the yeast Pichia pastoris system. The secreted porcine CTLA-4 was captured using Ni-Sepharose 6 fast flow resin and further purified using strong anion exchange resin Poros 50HQ. Glycosylation analysis using PNGase F demonstrated the N-linked glycosylation on P. pastoris expressed soluble porcine CTLA-4. To improve the expression level and facilitate the downstream purification we mutated the two potential N-linked glycosylation sites with non-polarized alanines by site-directed mutagenesis. Removal of the two N-glycosylation sites significantly improved the production level from ~2 to ~8mg/L. Biotinylated glycosylated and non-N-glycosylated soluble porcine CTLA-4 both bind to a porcine CD80-expressing B-cell lymphoma cell line (K(D)=13nM) and competitively inhibit the binding of an anti-CD80 monoclonal antibody. The availability of soluble porcine CTLA-4, especially the non-N-glycosylated CTLA-4, will provide a very valuable tool for assessing co-stimulatory blockade treatment for translational studies in the clinically relevant porcine model.  相似文献   

4.
The CD80/86-CD28 and CD40-CD40 ligand costimulatory pathways are essential for Th cell-dependent B cell responses that generate high-affinity, class-switched Ab in vivo. Disruption of either costimulatory pathway results in defective in vivo humoral immune responses, but it remains unclear to what extent this is due to deficient activation of Th cells and/or of B cells. To address this issue, we generated mixed chimeras in which CD80/86- or CD40-deficient bone marrow-derived cells coexist with wild-type (WT) cells, thereby providing the functional T cell help and accessory cell functions required for fully competent B cell responses. We were then able to assess the requirement for CD80/86 or CD40 expression on B cells producing class-switched Ig in response to a T-dependent Ag. In CD80/86 WT plus CD80/86 double-knockout mixed chimeras, both WT- and CD80/86-deficient B cells produced IgG1 and IgE responses, indicating that direct signaling by CD80/86 is not essential for efficient B cell activation. In marked contrast, only WT IgG1 and IgE responses were detected in the chimeras containing CD40-deficient cells, demonstrating that CD40 expression on B cells is essential for class switching by those B cells. Thus, while disrupting either the CD80/86-CD28 or the CD40-CD40 ligand costimulatory pathway abrogates T-dependent B cell immune responses, the two pathways are nonredundant and mediated by distinct mechanisms.  相似文献   

5.
Co-signaling molecules in the B7-CD28 family have been intensively studied over the past decade and have brought much excitement to the field of immune regulation. The discovery of new functions for the classical pathways CD80/CD86/CD28/CTLA-4 and the identification of novel pathways of the family, including B7-H1/B7-DC/PD-1, B7-H2/ICOS, B7-H3, B7-H4 and BTLA, are greatly broadening our understanding of the control of T cell-mediated immune responses and tolerance.  相似文献   

6.
Blockade of costimulatory signals is a promising therapeutic target to prevent allograft rejection. In this study, we sought to characterize to what extent CTLA-4 engagement contributes to the development of transplantation tolerance under the cover of CD40/CD40L and CD28/CD86 blockade. In vitro, we found that inhibition of the primary alloresponse and induction of alloantigen hyporesponsiveness by costimulation blockade was abrogated by anti-CTLA-4 mAb. In addition, regulatory CD4(+)CD25(+) T cells (T(REG)) were confirmed to play a critical role in the induction of hyporesponsiveness by anti-CD40L and anti-CD86 mAb. Our data indicated that CTLA-4 engagement is not required for activation or suppressor function of T(REG). Instead, in the absence of either CTLA-4 signaling or T(REG), CD8(+) T cell division was enhanced, whereas the inhibition of CD4(+) T cell division by costimulation blockade remained largely unaffected. In vivo, the administration of additional anti-CTLA-4 mAb abrogated anti-CD40L- and anti-CD86 mAb-induced cardiac allograft survival. Correspondingly, rejection was accompanied by enhanced allograft infiltration of CD8(+) cells. We conclude that CTLA-4 signaling and T(REG) independently cooperate in the inhibition of CD8(+) T cell expansion under costimulation blockade.  相似文献   

7.
The interactions between CD80 and CD86 on antigen-presenting cells and CD28 on T cells serve as an important costimulatory signal in the activation of T cells. Although the simplistic two-signal hypothesis has been challenged in recent years by the identification of different costimulators, this classical pathway has been shown to significantly impact antiviral humoral and cellular immune responses. How the CD80/CD86-CD28 pathway affects the control of chronic or latent infections has been less well characterized. In this study, we investigated its role in antiviral immune responses against murine gammaherpesvirus 68 (MHV-68) and immune surveillance using CD80/CD86(-/-) mice. In the absence of CD80/CD86, primary antiviral CD8(+) T-cell responses and the induction of neutralizing antibodies were severely impaired. During long-term immune surveillance, the virus-specific CD8(+) T cells were impaired in IFN-gamma production and secondary expansion and exhibited an altered phenotype. Surprisingly, a low level of viral reactivation in the lung was observed, and this effect was independent of CD28 and CTLA-4. Thus, CD80 and CD86, signaling through CD28 and possibly another unidentified receptor, are required for optimal immune surveillance and antiviral immune responses to murine gammaherpesvirus.  相似文献   

8.
The interactions between CD28/CTLA-4 (CD152) on T cells and their ligands CD80/CD86 on antigen presenting cells provide costimulatory signals critical for T cell activation. CD28/CTLA-4 and CD80/CD86 are members of the immunoglobulin superfamily (IgSF). CD28 and CTLA-4 both contain a single extracellular immunoglobulin (Ig) domain which binds CD80/CD86. Here we report modeling studies on the three-dimensional (3D) structure of the CTLA-4 binding domain. Since CTLA-4 displays only very weak sequence homology to proteins with known 3D structure, conventional modeling techniques were difficult to apply. Structure-oriented sequence comparison, consensus residue analysis, conformational searching, and inverse folding calculations were employed to aid in the generation of a comparative CTLA-4 model. Regions of high and low prediction confidence were identified, and the sequence-structure compatibility of the model was determined. Characteristics of the modeled structure, which resembles an Ig V domain, were analyzed, and the model was used to map N-linked glycosylation sites and residues critical for CTLA-4 function. The modeling approach described here can be applied to predict 3D structures of other IgSF proteins.  相似文献   

9.
Although food allergy has emerged as a major health problem, the mechanisms that are decisive in the development of sensitization to dietary Ag remain largely unknown. CTLA-4 signaling negatively regulates immune activation, and may play a crucial role in preventing induction and/or progression of sensitization to food Ag. To elucidate the role of CTLA-4 signaling in responses to food allergens, a murine model of peanut allergy was used. During oral exposure to peanut protein extract (PPE) together with the mucosal adjuvant cholera toxin (CT), which induces peanut allergy, CTLA-4 ligation was prevented using a CTLA-4 mAb. Additionally, the effect of inhibition of the CTLA-4 pathway on oral exposure to PPE in the absence of CT, which leads to unresponsiveness to peanut Ag, was explored. During sensitization, anti-CTLA-4 treatment considerably enhanced IgE responses to PPE and the peanut allergens, Ara h 1, Ara h 3, and Ara h 6, resulting in elevated mast cell degranulation upon an oral challenge. Remarkably, antagonizing CTLA-4 during exposure to PPE in the absence of CT resulted in significant induction of Th2 cytokines and an elevation in total serum IgE levels, but failed to induce allergen-specific IgE responses and mast cell degranulation upon a PPE challenge. These results indicate that CTLA-4 signaling is not the crucial factor in preventing sensitization to food allergens, but plays a pivotal role in regulating the intensity of a food allergic sensitization response. Furthermore, these data indicate that a profoundly Th2-biased cytokine environment is insufficient to induce allergic responses against dietary Ag.  相似文献   

10.
Regulatory T cells (Treg) are important in maintaining tolerance to self tissues. As both CD28 and CTLA-4 molecules are implicated in the function of Treg, we investigated the ability of their two natural ligands, CD80 and CD86, to influence the Treg-suppressive capacity. During T cell responses to alloantigens expressed on dendritic cells, we observed that Abs against CD86 potently enhanced suppression by CD4(+)CD25(+) Treg. In contrast, blocking CD80 enhanced proliferative responses by impairing Treg suppression. Intriguingly, the relative expression levels of CD80 and CD86 on dendritic cells are modulated during progression from an immature to a mature state, and this correlates with the ability of Treg to suppress responses. Our data show that CD80 and CD86 have opposing functions through CD28 and CTLA-4 on Treg, an observation that has significant implications for manipulation of immune responses and tolerance in vivo.  相似文献   

11.
The interactions between CD28/CTLA-4 (CD152) on T cells and their ligands CD80/CD86 on antigen presenting cells provide costimulatory signals critical for T cell activation. CD28/CTLA-4 and CD80/CD86 are members of the immunoglobulin superfamily (IgSF). CD28 and CTLA-4 both contain a single extracellular immunoglobulin (Ig) domain which binds CD80/CD86. Here we report modeling studies on the three-dimensional (3D) structure of the CTLA-4 binding domain. Since CTLA-4 displays only very weak sequence homology to proteins with known 3D structure, conventional modeling techniques were difficult to apply. Structure-oriented sequence comparison, consensus residue analysis, conformational searching, and inverse folding calculations were employed to aid in the generation of a comparative CTLA-4 model. Regions of high and low prediction confidence were identified, and the sequence-structure compatibility of the model was determined. Characteristics of the modeled structure, which resembles an Ig V domain, were analyzed, and the model was used to map N-linked glycosylation sites and residues critical for CTLA-4 function. The modeling approach described here can be applied to predict 3D structures of other IgSF proteins.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s008940050025  相似文献   

12.
Immunosuppression by UV light contributes significantly to the induction of skin cancer by suppressing the cell-mediated immune responses which control the development of carcinogenesis. The B7/CD28-CTLA-4 signaling pathway provides costimulatory signals essential for Ag-specific T cell activation. To investigate the role of this pathway in photocarcinogenesis, we utilized transgenic (Tg) mice which constitutively express CTLA-4Ig, a high-affinity CD28/CTLA-4 antagonist that binds to both B7-1 and B7-2. The transgene is driven by a skin-specific promoter yielding high levels of CTLA-4Ig in the skin and serum. Chronic UV exposure of CTLA-4Ig Tg mice resulted in significantly reduced numbers of skin tumors, when compared to control mice. In addition, Tg mice were resistant to UV-induced suppression of delayed-type hypersensitivity responses to alloantigens. Most importantly, upon stimulation with mitogens and alloantigens, T cells isolated from CTLA-4Ig Tg mice produced significantly less IL-4 but more IFN-gamma compared to control T cells, suggesting an impaired Th2 response and a relative increase of Th1-type immunity. Together, these data show that overall B7 engagement directs immune responses toward the Th2 pathway. Moreover, they point out the crucial role of Th1 immune reactions in the protection against photocarcinogenesis.  相似文献   

13.
Pertussis toxin (PTX) has pronounced adjuvant activity and strongly enhances innate and adaptive immune responses, including increased antibody production and Th1/Th2 cytokine production. Adjuvant effects of PTX on Th1 and Th2 cells are primarily mediated via CD80/86 costimulation via enhanced expression of these molecules by APCs. However, it has remained unresolved whether PTX modulates the expression of costimulatory and inhibitory molecules on CD4+ and CD8+ T cells. To address this question, we determined the expression kinetics of CD28, CTLA-4, and CD40L on spleen CD4+ and CD8+ T cells after incubation with PTX. The results show that PTX upregulated the expression of CD28 by CD8+ T cells, but not by CD4+ T cells. In contrast, the expression of CTLA-4 and CD40L was not substantially altered on CD4+ or CD8+ T cells. CD28 upregulation by CD8+ T cells was paralleled by upregulation of CD69 and the induction of IFN-γ, Granzyme B (GrB), and IL-17. CD8+ T cell activation and cytokine production could be substantially blocked with anti-CD80 and CD86 antibodies, consistent with CD28 mediated signaling. Treatment of highly purified CD8+ T cells with PTX resulted in upregulation of CD28 and CD69, and production of IFN-γ. Incubation with CD28 mAb further enhanced this effect, suggesting that PTX has direct effects on CD8+ T cells which are enhanced by CD80/86-mediated costimulation provided by APCs.  相似文献   

14.
CD28 and CTLA-4 are homologous cell surface proteins expressed by T cells. CD28 is constitutively expressed by most T cells, whereas CTLA-4 is expressed by activated T cells. Both proteins are ligands for the costimulatory molecules CD80 and CD86 expressed by activated B cells, macrophages, and dendritic cells. A fusion protein comprising the CTLA-4 extracellular domain joined to a human immunoglobulin heavy chain constant region (CTLA4Ig) binds CD80 and CD-86 with high affinity and inhibits CD80/CD86-dependent immune responses in vitro and in vivo. Attempts at producing the CTLA-4 extracellular domain as an unfused protein have met with limited success. Here we describe the expression and purification of the CTLA-4 extracellular domain as a nonfused protein in Escherichia coli. The 12.5-kDa CTLA-4 extracellular domain was insoluble when expressed in E. coli and required denaturation, reduction, and refolding steps to become soluble and assume its proper conformation. The protein refolded into a mixture of monomers, disulfide-linked dimers, and higher order disulfide-linked aggregates. sCTLA-4 dimers were the predominant refold form when air was used as the oxidizing agent during the refold procedure. Purified sCTLA-4 dimers were 10- to 50-fold more potent than sCTLA-4 monomers at inhibiting T cell activation using a CD80-dependent in vitro bioassay.  相似文献   

15.
The inducible costimulatory (ICOS) molecule is expressed by activated T cells and has homology to CD28 and CD152. ICOS binds B7h, a molecule expressed by APC with homology to CD80 and CD86. To investigate regulation of ICOS expression and its role in Th responses we developed anti-mouse ICOS mAbs and ICOS-Ig fusion protein. Little ICOS is expressed by freshly isolated mouse T cells, but ICOS is rapidly up-regulated on most CD4(+) and CD8(+) T cells following stimulation of the TCR. Strikingly, ICOS up-regulation is significantly reduced in the absence of CD80 and CD86 and can be restored by CD28 stimulation, suggesting that CD28-CD80/CD86 interactions may optimize ICOS expression. Interestingly, TCR-transgenic T cells differentiated into Th2 expressed significantly more ICOS than cells differentiated into Th1. We used two methods to investigate the role of ICOS in activation of CD4(+) T cells. First, CD4(+) cells were stimulated with beads coated with anti-CD3 and either B7h-Ig fusion protein or control Ig fusion protein. ICOS stimulation enhanced proliferation of CD4(+) cells and production of IFN-gamma, IL-4, and IL-10, but not IL-2. Second, TCR-transgenic CD4(+) T cells were stimulated with peptide and APC in the presence of ICOS-Ig or control Ig. When the ICOS:B7h interaction was blocked by ICOS-Ig, CD4(+) T cells produced more IFN-gamma and less IL-4 and IL-10 than CD4(+) cells differentiated with control Ig. These results demonstrate that ICOS stimulation is important in T cell activation and that ICOS may have a particularly important role in development of Th2 cells.  相似文献   

16.
17.
CD28, CTLA-4 and PD-L1, the three identified ligands for CD80/86, are pivotal positive and negative costimulatory molecules that, among other functions, control T cell motility and formation of immune synapse between T cells and antigen-presenting cells (APCs). What remains incompletely understood is how CD28 leads to the activation of effector T cells (Teff) but inhibition of suppression by regulatory T cells (Tregs), while CTLA-4 and PD-L1 inhibit Teff function but are crucial for the suppressive function of Tregs. Using alloreactive human T cells and blocking antibodies, we show here by live cell dynamic microscopy that CD28, CTLA-4, and PD-L1 differentially control velocity, motility and immune synapse formation in activated Teff versus Tregs. Selectively antagonizing CD28 costimulation increased Treg dwell time with APCs and induced calcium mobilization which translated in increased Treg suppressive activity, in contrast with the dampening effect on Teff responses. The increase in Treg suppressive activity after CD28 blockade was also confirmed with polyclonal Tregs. Whereas CTLA-4 played a critical role in Teff by reversing TCR-induced STOP signals, it failed to affect motility in Tregs but was essential for formation of the Treg immune synapse. Furthermore, we identified a novel role for PD-L1-CD80 interactions in suppressing motility specifically in Tregs. Thus, our findings reveal that the three identified ligands of CD80/86, CD28, CTLA-4 and PD-L1, differentially control immune synapse formation and function of the human Teff and Treg cells analyzed here. Individually targeting CD28, CTLA-4 and PD-L1 might therefore represent a valuable therapeutic strategy to treat immune disorders where effector and regulatory T cell functions need to be differentially targeted.  相似文献   

18.
Intervention in B7 (CD80/CD86)/B7-ligand (CD28/CTLA-4) pathways is an effective way of preventing unwanted immune responses, such as allograft rejection. Pregnancy maintenance represents maternal tolerance to the fetal allograft, which is accompanied by a type 2 helper cell (Th2) bias at the maternal-fetal interface. Here, the costimulatory signal of CD86 was selectively blocked, and that of CD80 was kept unimpaired by administration of anti-murine CD86 monoclonal antibody at the early gestational stage in abortion-prone CBA/JxDBA/2 matings and normal pregnant CBA/JxBALB/c matings. It was demonstrated that in vivo blockade of CD86 costimulation could suppress maternal immune attack to the fetus by shifting cytokines from Th1 predominance to Th2 bias at the maternal-fetal interface, and expanding peripheral CD4+CD25+ regulatory T cells, which play an important role in the development and maintenance of maternal-fetal tolerance. Furthermore, the expression of CD28 and its ligands CD80/CD86 on peripheral lymphocytes was down-regulated, whereas that of CTLA-4 was up-regulated, which might facilitate the suppressive effect of CD4+CD25+ regulatory T cells on the alloreactive T cells. The maternal-fetal immunotolerance induced by CD86 blockade decreased fetal resorption in CBA/JxDBA/2 matings, but did not affect normal pregnant CBA/JxBALB/c matings. These results suggest that selective blockade of CD86 costimulation leads to maternal immune tolerance to embryo antigen, and might contribute to a rational immunoregulatory regimen for recurrent spontaneous abortion.  相似文献   

19.
Oral administration of Ag coupled to cholera toxin B subunit (CTB) efficiently induces peripheral immunological tolerance. We investigated the extent to which this oral tolerance is mediated by CD25+CD4+ regulatory T cells (T(reg)). We found that total T(reg), KJ1-26+ T(reg) and CTLA-4+ T(reg) were all increased in Peyer's patches, mesenteric lymph nodes, and, to a lesser extent, in spleen of mice after intragastric administration of OVA/CTB conjugate, which also increased TGF-beta in serum. This could be abolished by co-administering cholera toxin or by treatment with anti-TGF-beta mAb. CD25+ T(reg), but also CD25-CD4+ T cells from OVA/CTB-treated BALB/c or DO11.10 mice efficiently suppressed effector T cell proliferation and IL-2 production in vitro. Following adoptive transfer, both T cell populations also suppressed OVA-specific T cell and delayed-type hypersensitivity responses in vivo. Foxp3 was strongly expressed by CD25+ T(reg) from OVA/CTB-treated mice, and treatment also markedly expanded CD25+Foxp3+ T(reg). Furthermore, in Rag1(-/-) mice that had adoptively received highly purified Foxp3-CD25-CD4+ OT-II T cells OVA/CTB feeding efficiently induced CD25+ T(reg) cells, which expressed Foxp3 more strongly than naturally developing T(reg) and also had stronger ability to suppress effector OT-II T cell proliferation. A remaining CD25- T cell population, which also became suppressive in response to OVA/CTB treatment, did not express Foxp3. Our results demonstrate that oral tolerance induced by CTB-conjugated Ag is associated with increase in TGF-beta and in both the frequency and suppressive capacity of Foxp3+ and CTLA-4+ CD25+ T(reg) together with the generation of both Foxp3+ and Foxp3-CD25- CD4+ T(reg).  相似文献   

20.
CTLA-4 (CD152) engagement can down-regulate T cell activation and promote the induction of immune tolerance. However, the strategy of attenuating T cell activation by engaging CTLA-4 has been limited by sharing of its natural ligands with the costimulatory protein CD28. In the present study, a CTLA-4-specific single-chain Ab (scFv) was developed and expressed on the cell surface to promote selective engagement of this regulatory molecule. Transfectants expressing anti-CTLA-4 scFv at their surface bound soluble CTLA-4 but not soluble CD28. Coexpression of anti-CTLA-4 scFv with anti-CD3epsilon and anti-CD28 scFvs on artificial APCs reduced the proliferation and IL-2 production by resting and preactivated bulk T cells as well as CD4+ and CD8+ T cell subsets. Importantly, expression of anti-CTLA-4 scFv on the same cell surface as the TCR ligand was essential for the inhibitory effects of CTLA-4-specific ligation. CTLA-4-mediated inhibition of tyrosine phosphorylation of components of the proximal TCR signaling apparatus was similarly dependent on coexpression of TCR and CTLA-4 ligands on the same surface. These findings support a predominant role for CTLA-4 function in the modification of the proximal TCR signal. Using T cells from DO11.10 and 2C TCR transgenic mice, negative regulatory effects of selective CTLA-4 ligation were also demonstrated during the stimulation of Ag-specific CD4+ and CD8+ T cells by MHC/peptide complexes. Together these studies demonstrate that selective ligation of CTLA-4 using a membrane-bound scFv results in attenuated T cell responses only when coengaged with the TCR during T cell/APC interaction and define an approach to harnessing the immunomodulatory potential of CTLA-4-specific ligation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号