共查询到20条相似文献,搜索用时 0 毫秒
1.
有效地利用原生质体系统作为作物改良的
技术,已吸引许多研究老致力于禾本科作物原
生质体的培养。近年来,在禾谷类作物上已有
一些报道[2-7,9],但仍然存在着很大困难;特别是
从禾谷类作物叶片分离的原生质体,更不易进
行有规则的持续分裂。正如一些研究者所指出
的,禾谷类的叶细胞缺少分裂的潜力,或者需要
特殊生长因子[8]。本文简要报道大麦叶肉原生
质体在马铃薯简化培养基中培养能有规则地进
行分裂的一些结果。 相似文献
2.
以马铃薯抗青枯病二倍体材料ED13和CE171、炸片颜色好的二倍体材料HS66以及优良性状双单体材料DH401和DH405为供体材料,对马铃薯叶肉原生质体培养进行研究。叶片悬浮黑暗预处理和试管苗黑暗预处理两种预处理方式对原生质体活力无显著影响。以0.5 mol/L甘露醇为渗透调节剂,25℃酶解12 h条件下,适宜CE171和DH401纤维酶浓度略高于ED13、HS66和DH405,分别为0.3%和0.4%。ED13和DH401原生质体在VKM液体培养基中培养3~4周,经愈伤组织生长培养基培养2周,转至芽诱导培养基培养,2~3个月后形成具根茎叶的完整植株。HS66和CE171原生质体培养6~8周也能形3~4 mm愈伤组织,但没有分化出芽;DH405的原生质体不分裂。 相似文献
3.
从大麦幼苗分离叶肉原生质体,5d苗龄的较4d及6d以上苗龄的得率高。提高Ca^2+浓度有利于原生质体的分离,浓度为10mmol/L时的得率最高。在以添加0.5mg/L2,4-D、1.0mg/L NAA及0.5mg/L ZT的改良MS培养基和微弱的光照条件下,原生质体能持续分裂,并形成小细胞团。 相似文献
4.
5.
茼蒿叶肉原生质体培养再生植株 总被引:1,自引:0,他引:1
从茼蒿(Chrysanthemum coronarium)第1片真叶制备原生质体,经悬滴培养和琼脂糖小块培养形成愈伤组织。愈伤组织在分化培养基上诱导芽的分化,再经诱导生根得到再生植株。 相似文献
6.
7.
本工作研究了豆科植物紫云英的叶片及叶肉原生质体的培养。叶片培养实验表明,诱导愈伤组织的最适培养基为MS加1.0-2.0毫克/升2,4-D和0.25毫克/升KT;诱导根分化需加1.0—5.0毫克/升NAA和0.5毫克/升BA;而苗分化则以0—0.5毫克/升IAA和0.5毫克/升BA为好。高浓度的NAA有利于根分化而抑制茎芽形成;高浓度的IAA对根和芽分化都有抑制作用。叶肉原生质体分离和培养试验表明,紫云英叶肉原生质体的释放及其培养活力受叶龄、植株生理状态和酶浓度的影响。叶肉原生质体在改良的KM8P培养基中能分裂。用改良KM8细胞培养基定期稀释,可使分裂持续进行而得到细胞团。BA和2,4-D为诱导紫云英叶肉原生质体分裂所必需。其最佳组合激素为BA 0.21毫克/升和2,4-D 1.13毫克/升。葡萄糖作为渗透压稳定剂时,其浓度明显影响原生质体的存活率。弱光条件下培养比黑暗培养有利于叶肉原生质体分裂。由叶肉原生质体形成的愈伤组织能形成瘤状结构和根。 相似文献
8.
9.
叶肉细胞原生质体培养再生植株变异的研究 总被引:1,自引:0,他引:1
为了满足社会对经济作物在数量及质量上不断提高的要求,寻找克服远缘杂交不亲和性及定向改变植物遗传性状的新途径,以培育出适合要求的优良品种,一直是生物学工作者努力的一个重要方面。近来年的研究结果表明,熟练地掌握植物原生质体培养的技术和方法,对于利用原生质... 相似文献
10.
洋葱叶肉原生质体培养再生小植株 总被引:1,自引:0,他引:1
用纤维素酶(EA 3-867)和离析酶(Macerozyme R-10)酶解洋葱叶肉细胞,游离获得大量具有活力的原生质体。在MS培养基上(附加2,4-D 2,6-BA 0.5 mg/l,原生质体能再生细胞壁,生长,分裂,形成类似球形的愈伤组织;将它们分别移入分化培养基MS_1,MS_2,MS_3,得到再生的小植株。 相似文献
11.
本文报道茄属果树可乐茄(SolanumquitoenseLam.)叶肉原生质体的分离、培养及植株再生。幼嫩叶片原生质体经酶游离、纯化后,以1×104个/ml密度培养于稍加改良K8p(附加2,4-D0.5mgL(-1)、NAA1.0mgL(-1)和BA0.5mgL(-1))的培养基中,三天后开始分裂,一周分裂3—4次。一个月形成小细胞团,植板率为0.1—0.2%,小细胞团转培养于MS+2,4-D0.5mgL(-1)上增殖后进行分化。原生质体来源愈伤组织在IAA(0.1—1.0mgL(-1))与BA或ZT组合的培养基中能诱导器官发生,芽分化率最高可达42.9%;但IAA、BA、ZT三者一起使用未见任何器官分化。小芽在MS+IAA0.2mgL(-1)中生根成植株。可乐茄叶肉原生质体的植株再生,可应用于育种和茄属植物遗传工程研究。 相似文献
12.
杨万年 《分子细胞生物学报》1986,(3)
本文研究了蚕豆叶肉原生质体经透明质酸酶、核糖核酸酶、神经氨酸酶、碱性磷酸酶、胰蛋白酶、脂肪酶六种水解酶和SDS、Triton X-100、CTMAB三种表面活性剂以及秋水仙素、细胞松驰素B处理后的电融合过程。结果表明:胰蛋白酶处理后的原生质体融合率明显下降;碱性磷酸酶、脂肪酶以及核糖核酸酶、透明质酸酶、神经氨酸酶处理的原生质体电融合率均有不同程度的上升。Triton X-100和CTMAB促进原生质体的电融合,但较高浓度(0.01%)的SDS起抑制作用。秋水仙素和细胞松驰素B处理的原生质体其电融合率有较大幅度的增高。 相似文献
13.
杨树新品种叶肉原生质体培养和植株再生 总被引:3,自引:1,他引:3
从1 个月龄的NL-80106 杨(Populusdeltoides×P. sim onii)无菌苗叶片分离得到大量原生质体,纯化后其原生质体产量为4×107/g fr.w t. 纯化的原生质体在含2,4-D 2 m g/L、NAA 0.5 m g/L和KT 0.5 m g/L的KM8p 和MS培养基中进行高密度液体浅层培养,渗透势为0.40 m ol/L的KM8p 培养基中原生质体分裂频率最高. 培养第5 天观察到第一次细胞分裂,培养10 d 的分裂频率为4.5% ,12 周内可形成大量的细胞团和小愈伤组织. NL-80106杨叶肉原生质体在富含有机氮并以葡萄糖为碳源的培养基中具有较高的分裂频率和植板率.小愈伤组织在gelrite 固化的NLZ1 培养基上增殖生长,3 周后形成4—6 m m 结构紧密的鲜红色愈伤组织,转至NLF分化培养基,分化成苗率为100% . 待芽伸长到3 cm 时,从基部切下转至1/2 MS培养基上诱导生根,形成完整植株 相似文献
14.
15.
用PEG—高Ca高PH法诱导抗卡那霉素的烟草(Nicotianatabacum)品系N364+Km+花粉原生质体和黄花烟草(Nicotiarustica)叶肉原生质体融合。幼嫩花粉原生质体和叶肉原生质体之间的融合体培养启动胚胎发生分裂,经卡那霉素筛选后,少数多细胞团存活并形成小愈伤组织。成熟花粉原生质体与叶肉原生质体之间的融合体则仅产生管状结构。这一结果表明,作为融合一方的花粉原生质体的发育时期对融合产物的发育途径有重要影响。 相似文献
16.
用EA_3-867纤维素酶分离的烟草(Nicotiana tabacum)叶肉原生质体,在不同培养条件下进行液体浅层培养,用荧光增白剂VBL染色荧光法和低渗冲击法研究了再生壁形成的某些培养条件。结果表明,600~1000米烛光的弱光、10~5个原生质体/毫升的密度以及蔗糖或甘露醇作碳源,有利于壁的再生。 相似文献
17.
马铃薯叶肉原生质体再生植株的研究 总被引:8,自引:0,他引:8
马铃薯两个品系小叶子x多子白和乌盟601的叶肉原生质体在原生质体培养基中诱导出愈伤组织,叶肉原生质体来源的愈伤组织转移到MS+2mg/1ZT 0.1mg/1 IAA培养基中,培养至70天以后,开始发生芽的分化,待芽生长到2-3cm高度时,转入MS+0.05mg/1 NAA培养基中,很快出根长成完整植株,带1-2片叶的茎段移栽入灭菌的混合土壤中生长并结出薯块。 相似文献
18.
马铃薯叶肉原生质体再生植株的研究 总被引:4,自引:0,他引:4
马铃薯两个品系小叶子x多子白和乌盟601的叶肉原生质体在原生质体培养基中诱导出愈伤组织,叶肉原生质体来源的愈伤组织转移到MS+2mg/1ZT+0.1mg/1 IAA培养基中,培养至70天以后,开始发生芽的分化,待芽生长到2-3cm高度时,转入MS+0.05mg/1 NAA培养基中,很快出根长成完整植株,带1-2片叶的茎段移栽入灭菌的混合土壤中生长并结出薯块。 相似文献
19.
本文对培养在8种不同培养基上的矮牵牛(Petunia hybrida)叶肉原生质体的生长情况进行了比较。在所用的培养基上,原生质体都再生了细胞壁、产生了持续的细胞分裂并发育成小细胞团。在其中6种培养基上得到了愈伤组织。最好的两种培养基是我们组合的G培养基及修改的K培养基,它们的植板效率分别达到56%及70%。 还进行了一些激素组合对愈伤组织生长和分化影响的试验,某些激素组合对愈伤组织的生长有较大的影响,在某些激素组合的培养基上愈伤组织已分化出根。 相似文献
20.
普通烟草(Nicotiana tabacum L.)“革新一号”和“柳叶”的叶肉原生质体悬浮液,在6厘米直径的培养皿皿盖反面滴7—12滴,每滴5—10微升,含200—300个原生质体。皿底内加3毫升0.4M甘露醇溶液以保持湿度。然后置于恒温中培养。经观察叶肉原生质体在NT培养液中,培养7天后发生第1次分裂,12天后形成细胞团,20几天后进一步分裂,形成肉眼可见的愈伤组织。以后将它转移到MS培养基,使其生长到一定大小的愈伤组织,再转移到诱导分化茎叶、根的培养基,获得完整的再生植株。 相似文献