首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The planar polarity and staircase-like pattern of the hair bundle are essential to the mechanoelectrical transduction function of inner ear sensory cells. Mutations in genes encoding myosin VIIa, harmonin, cadherin 23, protocadherin 15 or sans cause Usher syndrome type I (USH1, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa leading to blindness) in humans and hair bundle disorganization in mice. Whether the USH1 proteins are involved in common hair bundle morphogenetic processes is unknown. Here, we show that mouse models for the five USH1 genetic forms share hair bundle morphological defects. Hair bundle fragmentation and misorientation (25-52 degrees mean kinociliary deviation, depending on the mutant) were detected as early as embryonic day 17. Abnormal differential elongation of stereocilia rows occurred in the first postnatal days. In the emerging hair bundles, myosin VIIa, the actin-binding submembrane protein harmonin-b, and the interstereocilia-kinocilium lateral link components cadherin 23 and protocadherin 15, all concentrated at stereocilia tips, in accordance with their known in vitro interactions. Soon after birth, harmonin-b switched from the tip of the stereocilia to the upper end of the tip link, which also comprises cadherin 23 and protocadherin 15. This positional change did not occur in mice deficient for cadherin 23 or protocadherin 15. We suggest that tension forces applied to the early lateral links and to the tip link, both of which can be anchored to actin filaments via harmonin-b, play a key role in hair bundle cohesion and proper orientation for the former, and in stereociliary elongation for the latter.  相似文献   

2.
Defects in myosin VIIa, the PDZ-domain-containing protein harmonin, cadherin 23, protocadherin 15, and the putative scaffolding protein sans, underlie five genetic forms of Usher syndrome type I (USH1), the most frequent cause of hereditary deafness-blindness in humans. Mice mutants defective for any of these proteins have a severe hearing impairment and display similar inner ear phenotypes characterized by the abnormal spreading of the sensory cells' stereocilia. These are highly specialized mechanoreceptive organelles derived from microvilli, that normally form a well-structured hair bundle at the apex of inner ear sensory cells. All the USH1 proteins, except sans, have been detected in the growing stereocilia. Moreover, biochemical studies have started to unravel the multiple direct molecular interactions between USH1 proteins. In particular, harmonin can bind to the other four USH1 proteins and to F-actin. Finally, cell biology studies have provided the first insights into the functions of these proteins, and revealed that cadherin 23, and probably protocadherin 15 also, are associated with transient lateral links that interconnect growing stereocilia. These connectors play a critical role in the differentiating hair bundle.  相似文献   

3.
Stereocilia tip links of inner ear hair cells are subjected to constant stretching during hair-bundle deflection, and accordingly are well designed to prevent from being broken by mechanical tensions. The roots of tip links, which couple tip links with the cytoskeleton, supposedly play important roles in withstanding large forces under stimulated conditions. The upper root of the tip link is mainly formed by the cytoplasmic tail of cadherin23 and its actin-anchoring protein harmonin. However, the detailed organization mode of the two proteins that gives rise to a strong upper root remains unclear. Here we show that the exon68-encoded peptide of cadherin23 can either interact with the N-terminal domain (NTD) of harmonin or form a homodimer. We demonstrate that the three harmonin binding sites of cadherin23, namely the NTD-binding motif, the exon68 peptide, and the C-terminal PDZ binding motif, do not synergize with each other in binding to harmonin, instead they facilitate formation of polymeric cadherin23/harmonin complexes. The exon68 peptide can promote the cadherin23/harmonin polymer formation via either binding to harmonin NTD or self-dimerization. We propose that the polymeric cadherin23/harmonin complex formed beneath the upper tip link membranes may serve as part of the stable rootlet structure for anchoring the tip links of stereocilia.  相似文献   

4.
We have previously shown that the seemingly static paracrystalline actin core of hair cell stereocilia undergoes continuous turnover. Here, we used the same approach of transfecting hair cells with actin-green fluorescent protein (GFP) and espin-GFP to characterize the turnover process. Actin and espin are incorporated at the paracrystal tip and flow rearwards at the same rate. The flux rates (approximately 0.002-0.04 actin subunits s(-1)) were proportional to the stereocilia length so that the entire staircase stereocilia bundle was turned over synchronously. Cytochalasin D caused stereocilia to shorten at rates matching paracrystal turnover. Myosins VI and VIIa were localized alongside the actin paracrystal, whereas myosin XVa was observed at the tips at levels proportional to stereocilia lengths. Electron microscopy analysis of the abnormally short stereocilia in the shaker 2 mice did not show the characteristic tip density. We argue that actin renewal in the paracrystal follows a treadmill mechanism, which, together with the myosins, dynamically shapes the functional architecture of the stereocilia bundle.  相似文献   

5.
We have developed a bacterial artificial chromosome transgenesis approach that allowed the expression of myosin VIIa from the mouse X chromosome. We demonstrated the complementation of the Myo7a null mutant phenotype producing a fine mosaic of two types of sensory hair cells within inner ear epithelia of hemizygous transgenic females due to X inactivation. Direct comparisons between neighboring auditory hair cells that were different only with respect to myosin VIIa expression revealed that mutant stereocilia are significantly longer than those of their complemented counterparts. Myosin VIIa-deficient hair cells showed an abnormally persistent tip localization of whirlin, a protein directly linked to elongation of stereocilia, in stereocilia. Furthermore, myosin VIIa localized at the tips of all abnormally short stereocilia of mice deficient for either myosin XVa or whirlin. Our results strongly suggest that myosin VIIa regulates the establishment of a setpoint for stereocilium heights, and this novel role may influence their normal staircase-like arrangement within a bundle.  相似文献   

6.
The driving forces for the regulation of cell morphology are the Rho family GTPases that coordinate the assembly of the actin cytoskeleton. This dynamic feature is a result of tight coupling between the cytoskeleton and signal transduction and is facilitated by actin-binding proteins (ABPs). Mutations in the actin bundling and PDZ domain-containing protein harmonin are the causes of Usher syndrome type 1C (USH1C), a syndrome of congenital deafness and progressive blindness, as well as certain forms of non-syndromic deafness. Here, we have used the yeast two-hybrid assay to isolate molecular partners of harmonin and identified DOCK4, an unconventional guanine exchange factor for the Rho family of guanosine triphosphatases (Rho GEF GTPases), as a protein interacting with harmonin. Detailed molecular analysis revealed that a novel DOCK4 isoform (DOCK4-Ex49) is expressed in the brain, eye and inner ear tissues. We have further provided evidence that the DOCK4-Ex49 binds to nucleotide free Rac as effectively as DOCK2 and DOCK4 and it is a potent Rac activator. By immunostaining using a peptide antibody specific to DOCK4-Ex49, we showed its localization in the inner ear within the hair bundles along the stereocilia (SC). Together, our data indicate a possible Rac-DOCK4-ABP harmonin-activated signaling pathway in regulating actin cytoskeleton organization in stereocilia.  相似文献   

7.
Defects in myosin VIIA are responsible for deafness in the human and mouse. The role of this unconventional myosin in the sensory hair cells of the inner ear is not yet understood. Here we show that the C-terminal FERM domain of myosin VIIA binds to a novel transmembrane protein, vezatin, which we identified by a yeast two-hybrid screen. Vezatin is a ubiquitous protein of adherens cell-cell junctions, where it interacts with both myosin VIIA and the cadherin-catenins complex. Its recruitment to adherens junctions implicates the C-terminal region of alpha-catenin. Taken together, these data suggest that myosin VIIA, anchored by vezatin to the cadherin-catenins complex, creates a tension force between adherens junctions and the actin cytoskeleton that is expected to strengthen cell-cell adhesion. In the inner ear sensory hair cells vezatin is, in addition, concentrated at another membrane-membrane interaction site, namely at the fibrillar links interconnecting the bases of adjacent stereocilia. In myosin VIIA-defective mutants, inactivity of the vezatin-myosin VIIA complex at both sites could account for splaying out of the hair cell stereocilia.  相似文献   

8.
The apex of hair cells of the chicken auditory organ contains three different kinds of assemblies of actin filaments in close spatial proximity. These are (a) paracrystals of actin filaments with identical polarity in stereocilia, (b) a dense gellike meshwork of actin filaments forming the cuticular plate, and (c) a bundle of parallel actin filaments with mixed polarities that constitute the circumferential filament belt attached to the cytoplasmic aspect of the zonula adhaerens (ZA). Each different supramolecular assembly of actin filaments contains a specific actin filament cross-linking protein which is unique to that particular assembly. Thus fimbrin appears to be responsible for paracrystallin packing of actin filaments in stereocillia; an isoform of spectrin resides in the cuticular plate where it forms the whisker-like crossbridges, and alpha actinin is the actin crosslinking protein of the circumferential ZA bundle. Tropomyosin, which stabilizes actin filaments, is present in all the actin filament assemblies except for the stereocilia. Another striking finding was that myosin appears to be absent from the ZA ring and cuticular plate of hair cells although present in the ZA ring of supporting cells. The abundance of myosin in the ZA ring of the surrounding supporting cells means that it may be important in forming a supporting tensile cellular framework in which the hair cells are inserted.  相似文献   

9.
Transient transfection of hair cells has proven challenging. Here we describe modifications to the Bio-Rad Helios Gene Gun that, along with an optimized protocol, improve transfection of bullfrog, chick, and mouse hair cells. The increased penetrating power afforded by our method allowed us to transfect mouse hair cells from the basal side, through the basilar membrane; this configuration protects hair bundles from damage during the procedure. We characterized the efficiency of transfection of mouse hair cells with fluorescently-tagged actin fusion protein using both the optimized procedure and a published procedure; while the efficiency of the two methods was similar, the morphology of transfected hair cells was improved with the new procedure. In addition, using the improved method, we were able to transfect hair cells in the bullfrog sacculus and chick cochlea for the first time. We used fluorescent-protein fusions of harmonin b (USH1C) and PMCA2 (ATP2B2; plasma-membrane Ca2+-ATPase isoform 2) to examine protein distribution in hair cells. While PMCA2-EGFP localization was similar to endogenous PMCA2 detected with antibodies, high levels of harmonin-EGFP were found at stereocilia tapers in bullfrog and chick, but not mouse; by contrast, harmonin-EGFP was concentrated in stereocilia tips in mouse hair cells.  相似文献   

10.
Hair cell stereocilia are apical membrane protrusions filled with uniformly polarized actin filament bundles. Protein tyrosine phosphatase receptor Q (PTPRQ), a membrane protein with extracellular fibronectin repeats has been shown to localize at the stereocilia base and the apical hair cell surface, and to be essential for stereocilia integrity. We analyzed the distribution of PTPRQ and a possible mechanism for its compartmentalization. Using immunofluorescence we demonstrate that PTPRQ is compartmentalized at the stereocilia base with a decaying gradient from base to apex. This distribution can be explained by a model of transport directed toward the stereocilia base, which counteracts diffusion of the molecules. By mathematical analysis, we show that this counter transport is consistent with the minus end-directed movement of myosin VI along the stereocilia actin filaments. Myosin VI is localized at the stereocilia base, and exogenously expressed myosin VI and PTPRQ colocalize in the perinuclear endosomes in COS-7 cells. In myosin VI-deficient mice, PTPRQ is distributed along the entire stereocilia. PTPRQ-deficient mice show a pattern of stereocilia disruption that is similar to that reported in myosin VI-deficient mice, where the predominant features are loss of tapered base, and fusion of adjacent stereocilia. Thin section and freeze-etching electron microscopy showed that localization of PTPRQ coincides with the presence of a dense cell surface coat. Our results suggest that PTPRQ and myosin VI form a complex that dynamically maintains the organization of the cell surface coat at the stereocilia base and helps maintain the structure of the overall stereocilia bundle.  相似文献   

11.
Hearing relies on the ability of the inner ear to convert sound waves into electrical signals. The main actors in this process are hair cells. Their stereocilia contain a number of specific proteins and a scaffold of actin molecules. They are organized in bundles by tip-link filaments composed of cadherin 23 and protocadherin 15. The bundle is deflected by sound waves leading to the opening of mechano-transduction channels and to the influx of K(+) and Ca(2+) into the stereocilia. Cadherin 23 and the plasma membrane calcium ATPase isoform 2 (PMCA2) are defective in human and murine cases of deafness. While the involvement of cadherin 23 in deafness/hearing could be expected due to its structural role in the tip-links, that of PMCA2 has been discovered only recently. This review will summarize the structural and functional characteristics of hair cells, focusing on the proteins whose mutations may lead to a deafness phenotype.  相似文献   

12.
Mutant alleles of the gene encoding cadherin 23 are associated with Usher syndrome type 1 (USH1D), isolated deafness (DFNB12) in humans, and deafness and circling behavior in waltzer (v) mice. Stereocilia of waltzer mice are disorganized and the kinocilia misplaced, indicating the importance of cadherin 23 for hair bundle development. Cadherin 23 was localized to developing stereocilia and proposed as a component of the tip link. We show that, during development of the inner ear, cadherin 23 is initially detected in centrosomes at E14.5, then along the length of emerging stereocilia, and later becomes concentrated at and subsequently disappears from the tops of stereocilia. In mature vestibular hair bundles, cadherin 23 is present along the kinocilium and in the region of stereocilia-kinocilium bonds, a pattern conserved in mammals, chicks, and frogs. Cadherin 23 is also present in Reissner's membrane (RM) throughout development. In homozygous v(6J) mice, a reported null allele, cadherin 23 was absent from stereocilia, but present in kinocilia, RM, and centrosomes. We reconciled these results by identifying two novel isoforms of Cdh23 unaffected in sequence and expression by the v(6J) allele. Our results suggest that Cdh23 participation in stereocilia links may be restricted to developing hair bundles.  相似文献   

13.
Myosin VI, found in organisms from Caenorhabditis elegans to humans, is essential for auditory and vestibular function in mammals, since genetic mutations lead to hearing impairment and vestibular dysfunction in both humans and mice. Here, we show that a missense mutation in this molecular motor in an ENU-generated mouse model, Tailchaser, disrupts myosin VI function. Structural changes in the Tailchaser hair bundles include mislocalization of the kinocilia and branching of stereocilia. Transfection of GFP-labeled myosin VI into epithelial cells and delivery of endocytic vesicles to the early endosome revealed that the mutant phenotype displays disrupted motor function. The actin-activated ATPase rates measured for the D179Y mutation are decreased, and indicate loss of coordination of the myosin VI heads or ‘gating’ in the dimer form. Proper coordination is required for walking processively along, or anchoring to, actin filaments, and is apparently destroyed by the proximity of the mutation to the nucleotide-binding pocket. This loss of myosin VI function may not allow myosin VI to transport its cargoes appropriately at the base and within the stereocilia, or to anchor the membrane of stereocilia to actin filaments via its cargos, both of which lead to structural changes in the stereocilia of myosin VI–impaired hair cells, and ultimately leading to deafness.  相似文献   

14.
We investigated hair bundle mechanoreceptors in sea anemones for a homolog of cadherin 23. A candidate sequence was identified from the database for Nematostella vectensis that has a shared lineage with vertebrate cadherin 23s. This cadherin 23-like protein comprises 6,074 residues. It is an integral protein that features three transmembrane alpha-helices and a large extracellular loop with 44 contiguous, cadherin (CAD) domains. In the second half of the polypeptide, the CAD domains occur in a quadruple repeat pattern. Members of the same repeat group (i.e., CAD 18, 22, 26, and so on) share nearly identical amino acid sequences. An affinity-purified antibody was generated to a peptide from the C-terminus of the cadherin 23-like polypeptide. The peptide is expected to lie on the exoplasmic side of the plasma membrane. In LM, the immunolabel produced punctate fluorescence in hair bundles. In TEM, immunogold particles were observed medially and distally on stereocilia of hair bundles. Dilute solutions of the antibody disrupted vibration sensitivity in anemones. We conclude that the cadherin 23-like polypeptide likely contributes to the mechanotransduction apparatus of hair bundle mechanoreceptors of anemones.  相似文献   

15.
Unconventional myosins have been associated with hearing loss in humans, mice, and zebrafish. Mutations in myosin VI cause both recessive and dominant forms of nonsyndromic deafness in humans and deafness in Snell's waltzer mice associated with abnormal fusion of hair cell stereocilia. Although myosin VI has been implicated in diverse cellular processes such as vesicle trafficking and epithelial morphogenesis, the role of this protein in the sensory hair cells remains unclear. To investigate the function of myosin VI in zebrafish, we cloned and examined the expression pattern of myosin VI, which is duplicated in the zebrafish genome. One duplicate, myo6a, is expressed in a ubiquitous pattern during early development and at later stages, and is highly expressed in the brain, gut, and kidney. myo6b, on the other hand, is predominantly expressed in the sensory epithelium of the ear and lateral line at all developmental stages examined. Both molecules have different splice variants expressed in these tissues. Using a candidate gene approach, we show that myo6b is satellite, a gene responsible for auditory/vestibular defects in zebrafish larvae. Examination of hair cells in satellite mutants revealed that stereociliary bundles are irregular and disorganized. At the ultrastructural level, we observed that the apical surface of satellite mutant hair cells abnormally protrudes above the epithelium and the membrane near the base of the stereocilia is raised. At later stages, stereocilia fused together. We conclude that zebrafish myo6b is required for maintaining the integrity of the apical surface of hair cells, suggesting a conserved role for myosin VI in regulation of actin-based interactions with the plasma membrane.  相似文献   

16.
17.
Hearing and balance depend on microvilli-like actin-based projections of sensory hair cells called stereocilia. Their sensitivity to mechanical displacements on the nanometer scale requires a highly organized hair bundle in which the physical dimension of each stereocilium is tightly controlled. The length and diameter of each stereocilium are established during hair bundle maturation and maintained by life-long continuing dynamic regulation. Here, we studied the role of the actin-bundling protein Espin in stereociliary growth by examining the hair cell stereocilia of Espin-deficient jerker mice (Espn(je)), and the effects of transiently overexpressing Espin in the neuroepithelial cells of the organ of Corti cultures. Using fluorescence scanning confocal and electron microscopy, we found that a lack of Espin results in inhibition of stereociliary growth followed by progressive degeneration of the hair bundle. In contrast, overexpression of Espin induced lengthening of stereocilia and microvilli that mirrored the elongation of the actin filament bundle at their core. Interestingly, Espin deficiency also appeared to influence the localization of Myosin XVa, an unconventional myosin that is normally present at the stereocilia tip at levels proportional to stereocilia length. These results indicate that Espin is important for the growth and maintenance of the actin-based protrusions of inner ear neuroepithelial cells.  相似文献   

18.
19.
Defects of the myosin VIIa motor protein cause deafness and retinal anomalies in humans and mice. We report on the identification of a novel myosin-VIIa-interacting protein that we have named MyRIP (myosin-VIIa- and Rab-interacting protein), since it also binds to Rab27A in a GTP-dependent manner. In the retinal pigment epithelium cells, MyRIP, myosin VIIa and Rab27A are associated with melanosomes. In transfected PC12 cells, overexpression of MyRIP was shown to interfere with the myosin VIIa tail localization. We propose that a molecular complex composed of Rab27A, MyRIP and myosin VIIa bridges retinal melanosomes to the actin cytoskeleton and thereby mediates the local trafficking of these organelles. The defect of this molecular complex is likely to account for the perinuclear mislocalization of the melanosomes observed in the retinal pigment epithelium cells of myosinVIIa-defective mice.  相似文献   

20.
A complex of proteins scaffolded by the PDZ protein, whirlin, reside at the stereocilia tip and are critical for stereocilia development and elongation. We have shown that in outer hair cells (OHCs) whirlin is part of a larger complex involving the MAGUK protein, p55, and protein 4.1R. Whirlin interacts with p55 which is expressed exclusively in outer hair cells (OHC) in both the long stereocilia that make up the stereocilia bundle proper as well as surrounding shorter microvilli that will eventually regress. In erythrocytes, p55 forms a tripartite complex with protein 4.1R and glycophorin C promoting the assembly of actin filaments and the interaction of whirlin with p55 indicates that it plays a similar role in OHC stereocilia. However, the components directly involved in actin filament regulation in stereocilia are unknown. We have investigated additional components of the whirlin interactome by identifying interacting partners to p55. We show that the actin capping and severing protein, gelsolin, is a part of the whirlin complex. Gelsolin is detected in OHC where it localizes to the tips of the shorter rows but not to the longest row of stereocilia and the pattern of localisation at the apical hair cell surface is strikingly similar to p55. Like p55, gelsolin is ablated in the whirler and shaker2 mutants. Moreover, in a gelsolin mutant, stereocilia in the apex of the cochlea become long and straggly indicating defects in the regulation of stereocilia elongation. The identification of gelsolin provides for the first time a link between the whirlin scaffolding protein complex involved in stereocilia elongation and a known actin regulatory molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号