首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MicroRNAs (miRNAs) are a specialized class of small silencing RNAs that regulate gene expression in eukaryotes. In plants, miRNAs negatively regulate target mRNAs containing a highly complementary sequence by either mRNA cleavage or translational repression. As a model plant to study fleshy fruit ripening, miRNA studies in tomato have made great progress recently. MiRNAs were predicted to be involved in nearly all biological processes in tomato, particularly development, differentiation, and biotic and abiotic stress responses. Surprisingly, several miRNAs were verified to be involved in tomato fruit ripening and senescence. Recent studies suggest that miRNAs are related to host-virus interactions, which raises the possibility that miRNAs can be used as diagnostic markers for response to virus infection in tomato plants. In this review, we summarize our current knowledge systematically and advance future directions for miRNA research in tomato.  相似文献   

2.
3.
Camelina sativa is an annual oilseed crop that is under intensive development for renewable resources of biofuels and industrial oils. MicroRNAs, or miRNAs, are endogenously encoded small RNAs that play key roles in diverse plant biological processes. Here, we conducted deep sequencing on small RNA libraries prepared from camelina leaves, flower buds and two stages of developing seeds corresponding to initial and peak storage products accumulation. Computational analyses identified 207 known miRNAs belonging to 63 families, as well as 5 novel miRNAs. These miRNAs, especially members of the miRNA families, varied greatly in different tissues and developmental stages. The predicted miRNA target genes are involved in a broad range of physiological functions including lipid metabolism. This report is the first step toward elucidating roles of miRNAs in C. sativa and will provide additional tools to improve this oilseed crop for biofuels and biomaterials.  相似文献   

4.
Gill BS 《Genetics》1974,77(1):61-70
Cytogenetic studies were carried out on a ditertiary tetrasomic, 2n + 2 (5L·7S), of tomato (Lycopersicon esculentum Mill.). In studies of transmission of the 5L·7S chromosome, male and female rates of 57.1% and 74.5%, respectively, were found—the highest yet reported for any tomato aneuploid. Additionally, two 5L·7S tertiary chromosomes were transmitted through the female gametophyte, the maximum duplication known to be tolerated by this developmental stage. Monotertiary tetrasomics of a novel type, 2n + 5L·5S + 5L·7S, were recovered in the selfed progeny of 2n + 2(5L·7S). The usefulness of the ditertiary tetrasomic for the production of double trisomics and for dosage and experimental evolutionary studies is elaborated.  相似文献   

5.

Background  

Whereas the molecular assembly of protein expression clones is readily automated and routinely accomplished in high throughput, sequence verification of these clones is still largely performed manually, an arduous and time consuming process. The ultimate goal of validation is to determine if a given plasmid clone matches its reference sequence sufficiently to be "acceptable" for use in protein expression experiments. Given the accelerating increase in availability of tens of thousands of unverified clones, there is a strong demand for rapid, efficient and accurate software that automates clone validation.  相似文献   

6.
Effective drug delivery for many neurodegenerative diseases or tumors of the central nervous system is challenging. Targeted invasive delivery of large macromolecules such as trophic factors to desired locations inside the brain is difficult due to anisotropy and heterogeneity of the brain tissue. Despite much experimental research, prediction of bio-transport phenomena inside the brain remains unreliable. This article proposes a rigorous computational approach for accurately predicting the fate of infused therapeutic agents inside the brain. Geometric and physiological properties of anisotropic and heterogeneous brain tissue affecting drug transport are accounted for by in-vivo diffusion tensor magnetic resonance imaging data. The three-dimensional brain anatomy is reconstructed accurately from subject-specific medical images. Tissue anisotropy and heterogeneity are quantified with the help of diffusion tensor imaging (DTI). Rigorous first principles physical transport phenomena are applied to predict the fate of a high molecular weight trophic factor infused into the midbrain. Computer prediction of drug distribution in humans accounting for heterogeneous and anisotropic brain tissue properties have not been adequately researched in open literature before.  相似文献   

7.
8.
Parthenocarpy is the development of the fruit in absence of pollination and/or fertilization. In tomato, parthenocarpy is considered as an attractive trait to solve the problems of fruit setting under unfavorable conditions. We studied the genetics of parthenocarpy in two different lines, IL5-1 and IVT-line 1, both carrying Solanum habrochaites chromosome segments. Parthenocarpy in IL5-1 is under the control of two QTLs, one on chromosome 4 (pat4.1) and one on chromosome 5 (pat5.1). IVT-line 1 also contains two parthenocarpy QTLs, one on chromosome 4 (pat4.2) and one on chromosome 9 (pat9.1). In addition, we identified one stigma exsertion locus in IL5-1, located on the long arm of chromosome 5 (se5.1). It is likely that pat4.1, from IL5-1 and pat4.2, from IVT-line 1, both located near the centromere of chromosome 4 are allelic. By making use of the microsynteny between tomato and Arabidopsis in this genetic region, we identified ARF8 as a potential candidate gene for these two QTLs. ARF8 is known to act as an inhibitor for further carpel development in Arabidopsis, in absence of pollination/fertilization. Expression of an aberrant form of the Arabidopsis ARF8 gene, in tomato, has been found to cause parthenocarpy. This candidate gene approach may lead to the first isolation of a parthenocarpy gene in tomato and will allow further use in several crop species.  相似文献   

9.
The currently available body of decoded amino acid sequences of various proteins exceeds manifold the experimental capabilities of their functional annotation. Therefore, in silico annotation using bioinformatics methods becomes increasingly important. Such annotation is actually a prediction; however, this can be an important starting point for further laboratory research. This work describes a new method for predicting functionally important protein sites, SDPsite, on the basis of identification of specificity determinants. The algorithm proposed utilizes a protein family aglinment and a phylogenetic tree to predict the conserved positions and specificity determinants, map them onto the protein structure, and search for clusters of the predicted positions. Comparison of the resulting predictions with experimental data and published predictions of functional sites by other methods demonstrates that the results of SDPsite agree well with experimental data and exceed the results obtained with the majority of previous methods. SDPsite is publicly available at http://bioinf.fbb.msu.ru/SDPsite.  相似文献   

10.
Acute pancreatitis (AP) is an inflammatory disorder initiated by activation of pancreatic zymogens, leading to pancreatic injury and systemic inflammatory response. MicroRNAs (miRNAs) have emerged as important regulators of gene expression and key players in human physiological and pathological processes. Discoveries over the past decade have confirmed that altered expression of miRNAs is implicated in the pathogenesis of AP. Indeed, a number of miRNAs have been found to be dysregulated in various cell types involved in AP such as acinar cells, macrophages, and lymphocytes. These aberrant miRNAs can regulate acinar cell necrosis and apoptosis, local and systemic inflammatory response, thereby contributing to the initiation and progression of AP. Moreover, patients with AP possess unique miRNA signatures when compared with healthy individuals or those with other diseases. In view of their stability and easy detection, therefore, miRNAs have the potential to act as biomarkers for the diagnosis and assessment of patients with AP. In this review, we provide an overview of the novel cellular and molecular mechanisms underlying the roles of miRNAs during the disease processes of AP, as well as the potential diagnosis and therapeutic biomarkers of miRNAs in patients with AP.  相似文献   

11.
Monitoring cholesterol levels is strongly recommended to identify patients at risk for myocardial infarction. However, clinical markers beyond "bad" and "good" cholesterol are needed to precisely predict individual lipid disorders. Our work contributes to this aim by bringing together experiment and theory. We developed a novel computer-based model of the human plasma lipoprotein metabolism in order to simulate the blood lipid levels in high resolution. Instead of focusing on a few conventionally used predefined lipoprotein density classes (LDL, HDL), we consider the entire protein and lipid composition spectrum of individual lipoprotein complexes. Subsequently, their distribution over density (which equals the lipoprotein profile) is calculated. As our main results, we (i) successfully reproduced clinically measured lipoprotein profiles of healthy subjects; (ii) assigned lipoproteins to narrow density classes, named high-resolution density sub-fractions (hrDS), revealing heterogeneous lipoprotein distributions within the major lipoprotein classes; and (iii) present model-based predictions of changes in the lipoprotein distribution elicited by disorders in underlying molecular processes. In its present state, the model offers a platform for many future applications aimed at understanding the reasons for inter-individual variability, identifying new sub-fractions of potential clinical relevance and a patient-oriented diagnosis of the potential molecular causes for individual dyslipidemia.  相似文献   

12.
应用生物信息学寻找山羊新的microRNA分子及其实验验证   总被引:2,自引:0,他引:2  
陈海漩  严忠海  龙健儿  颜景斌  黄英 《遗传》2008,30(10):1326-1332
摘要: microRNA(miRNA)是一类长约22个碱基的非编码RNA分子, 在转录后水平调节基因的表达及其在细胞的增殖、分化、凋亡等过程中起着重要的调控作用。根据miRNA分子具有一定的保守性, 文章将人、小鼠、牛、猪和狗5种哺乳动物已知的miRNA分子与NCBI公布的与山羊具有极高同源性的绵羊基因组序列对比, 获得11条miRNA候选分子, 然后通过逆转录聚合酶链反应(RT-PCR)验证, 发现在山羊脑组织中这11条分子均有表达, 肝脏组织中有5条分子表达, 初步确定为山羊新的miRNA分子, 为寻找山羊miRNA提供了新的 思路。  相似文献   

13.
Aims: To develop a highly sensitive and rapid protocol for simultaneous detection and differentiation of Tobacco mosaic virus (TMV) and Tomato mosaic virus (ToMV) in pepper and tomato. In this study, we use the multiplex PCR technique to detect dual infection of these two viruses. Methods and Results: A multiplex RT–PCR method consisting of one‐tube reaction with two primer pairs targeted to replicase genes was developed to simultaneously detect TMV and ToMV in seed samples of pepper and tomato. Specific primers were designed from conserved regions of each of the virus genomes, and their specificity was confirmed by sequencing PCR products. RT–PCR detected up to 10?6 dilution of total RNA extracted from infected leaves. Multiplex RT–PCR revealed the presence of both TMV and ToMV in three of 18 seed samples of tomato and one of 18 seed samples of pepper. Conclusions: The multiplex PCR assay was a cost effective, quick diagnostic technique, which was helpful in differentiating TMV and ToMV accurately. Significance and Impact of the Study: The multiplex PCR assay described in this study is a valuable tool for plant pathology and basic research studies. This method may facilitate better recognition and distinction of TMV and ToMV in both pepper and tomato.  相似文献   

14.
15.
16.
17.
Xie FL  Huang SQ  Guo K  Xiang AL  Zhu YY  Nie L  Yang ZM 《FEBS letters》2007,581(7):1464-1474
MicroRNAs (miRNAs) are a newly discovered class of non-protein-coding small RNAs with roughly 22 nucleotide-long. Increasing evidence has shown that miRNAs play multiple roles in biological processes, including development, cell proliferation and apoptosis and stress responses. In this research, several approaches were combined to make computational prediction of potential miRNAs and their targets in Brassica napus. We used previously known miRNAs from Arabidopsis, rice and other plant species against both expressed sequence tags (EST) and genomic survey sequence (GSS) databases to search for potential miRNAs in B. napus. A total of 21 potential miRNAs were detected following a range of strict filtering criteria. Using these potential miRNA sequences, we could further blast the mRNA database and found 67 potential targets in this species. According to the mRNA target information provided by NCBI (http://www.ncbi.nlm.nih.gov/), most of the target mRNAs appeared to be involved in plant growth, development and stress responses. To validate the prediction of miRNAs in B. napus, we performed a RT-PCR based assay of mature miRNA expression. Five miRNAs were identified in response to auxin, cadmium stress and phosphate starvation. So far, little is known about experimental or computational identification of miRNA in B. napus species. To improve efficiency for blast search, we developed an implementation (miRNAassist) that can identify homologs of miRNAs and their targets, with high sensitivity and specificity. The program is allowed to be run on Windows Operation System platform. miRNAassist is freely available if required.  相似文献   

18.
19.
20.
Endo-beta-mannanase (EC 3.2.1.78) is involved in cell wall disassembly and the weakening of plant tissues by degrading mannan polymers in the cell walls. Endo-beta-mannanase genes are expressed in tomato (Lycopersicon esculentum) seeds (LeMAN1 and LeMAN2) and fruits (LeMAN3 and LeMAN4). A novel endo-beta-mannanase gene (termed LeMAN5) was found in the tomato genome by genome-walking PCR and bacterial artificial chromosome library screening. The 5'-upstream region of this endo-beta-mannanase gene contained four copies of the pollen-specific cis-acting elements POLLEN1LELAT52 (AGAAA). A GUS-reporter gene driven with the putative LeMAN5 promoter (-543 to +38) was activated in anthers and pollen of transgenic Arabidopsis, with the highest beta-glucuronidase activity detected in pollen. beta-Glucuronidase expression was detected in mature pollen retained in sporangia, discharged pollen, and elongating pollen tubes in transgenic Arabidopsis. Consistently, expression of LeMAN5 mRNA and endo-beta-mannnanase activity was detected in tomato anthers and pollen. In anthers, the highest mRNA expression and endo-beta-mannanase activity were detected during late stages of anther development, when pollen maturation occurred. Endo-beta-mannanase activity was present in discharged pollen, which was easily eluted in a buffer, indicating that the enzyme proteins are probably secreted from, and deposited on, the surface of pollen. These data suggest that the LeMAN5 endo-beta-mannanase is associated with anther and pollen development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号