首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ret, the receptor tyrosine kinase for the glial cell line-derived neurotrophic factor family ligands (GFLs), is alternatively spliced to yield at least two isoforms, Ret9 and Ret51, which differ only in their C termini. To identify tyrosines in Ret that are autophosphorylation sites in neurons, we generated antibodies specific to phosphorylated Y905Ret, Y1015Ret, Y1062Ret, and Y1096Ret, all of which are autophosphorylated in cell lines. All four of these tyrosines in Ret became phosphorylated rapidly upon activation by GFLs in sympathetic neurons. These tyrosines remained phosphorylated in sympathetic neurons in the continued presence of GFLs, albeit at a lower level than immediately after GFL treatment. Comparison of GFL activation of Ret9 and Ret51 revealed that phosphorylation of Tyr(905) and Tyr(1062) was greater and more sustained in Ret9 as compared with Ret51. In contrast, Tyr(1015) was more highly phosphorylated over time in Ret51 than in Ret9. Surprisingly, Ret9 and Ret51 did not associate with each other in sympathetic neurons after glial cell line-derived neurotrophic factor stimulation, even though they share identical extracellular domains. Furthermore, the signaling complex associated with Ret9 was markedly different from the Ret51-associated signaling complex. Taken together, these data provide a biochemical basis for the dramatic functional differences between Ret9 and Ret 51 in vivo.  相似文献   

2.
Nerve growth factor (NGF) is required for the trophic maintenance of postnatal sympathetic neurons. A significant portion of the growth-promoting activity of NGF is from NGF-dependent phosphorylation of the heterologous receptor tyrosine kinase, Ret. We found that NGF applied selectively to distal axons of sympathetic neurons maintained in compartmentalized cultures activated Ret located in these distal axons. Inhibition of either proteasomal or lysosomal degradation pathways mimicked the effect of NGF on Ret activation. Likewise, NGF inhibited the degradation of Ret induced by glial cell line-derived neurotrophic factor-dependent activation, a process that requires ubiquitination and proteasomal degradation. NGF induced the accumulation of autophosphorylated Ret predominantly in the plasma membrane, in contrast to GDNF, which promoted the internalization of activated Ret. An accretion of monoubiquitinated, but not polyubiquitinated, Ret occurred in NGF-treated neurons, in contrast to glial cell line-derived neurotrophic factor that promoted the robust polyubiquitination of Ret. Thus, NGF stimulates Ret activity in mature sympathetic neurons by inhibiting the ongoing ubiquitin-mediated degradation of Ret before its internalization and polyubiquitination.  相似文献   

3.
During postnatal development, sympathetic neurons lose their dependence upon NGF for survival but continue to require NGF for soma and process growth and for development of a mature neurotransmitter phenotype. Although c-Ret is expressed in sympathetic neurons during this period, its function in these transitional processes is unclear. The level of Ret phosphorylation markedly increased with postnatal age in SCG neurons in vitro and in vivo. Postnatal Ret phosphorylation did not require either GFLs or GFR(alpha) coreceptors. Instead, NGF promoted age-dependent Ret phosphorylation with delayed kinetics both in vitro and in vivo. Functionally, maximal NGF-dependent trophism of mature sympathetic neurons required Ret, but not GFR(alpha) coreceptors. Therefore, NGF promotes phosphorylation of the heterologous RTK Ret resulting in augmented growth, metabolism, and gene expression.  相似文献   

4.
Expression of the Ret receptor tyrosine kinase is a defining feature of enteric neurons. Its importance is underscored by the effects of its mutation in Hirschsprung disease, leading to absence of gut innervation and severe gastrointestinal symptoms. We report a new and physiologically significant site of Ret expression in the intestine: the intestinal epithelium. Experiments in Drosophila indicate that Ret is expressed both by enteric neurons and adult intestinal epithelial progenitors, which require Ret to sustain their proliferation. Mechanistically, Ret is engaged in a positive feedback loop with Wnt/Wingless signalling, modulated by Src and Fak kinases. We find that Ret is also expressed by the developing intestinal epithelium of mice, where its expression is maintained into the adult stage in a subset of enteroendocrine/enterochromaffin cells. Mouse organoid experiments point to an intrinsic role for Ret in promoting epithelial maturation and regulating Wnt signalling. Our findings reveal evolutionary conservation of the positive Ret/Wnt signalling feedback in both developmental and homeostatic contexts. They also suggest an epithelial contribution to Ret loss‐of‐function disorders such as Hirschsprung disease.  相似文献   

5.
Ret is the receptor tyrosine kinase for the glial cell line-derived neurotrophic factor (GDNF) family of neuronal growth factors. Upon activation by GDNF, Ret is rapidly polyubiquitinated and degraded. This degradation process is isoform-selective, with the longer Ret51 isoform exhibiting different degradation kinetics than the shorter isoform, Ret9. In sympathetic neurons, Ret degradation is induced, at least in part, by a complex consisting of the adaptor protein CD2AP and the E3-ligase Cbl-3/c. Knockdown of Cbl-3/c using siRNA reduced the GDNF-induced ubiquitination and degradation of Ret51 in neurons and podocytes, suggesting that Cbl-3/c was a predominant E3 ligase for Ret. Coexpression of CD2AP with Cbl-3/c augmented the ubiquitination of Ret51 as compared with the expression of Cbl-3/c alone. Ret51 ubiquitination by the CD2AP·Cbl-3/c complex required a functional ring finger and TKB domain in Cbl-3/c. The SH3 domains of CD2AP were sufficient to drive the Cbl-3/c-dependent ubiquitination of Ret51, whereas the carboxyl-terminal coiled-coil domain of CD2AP was dispensable. Interestingly, activated Ret induced the degradation of CD2AP, but not Cbl-3/c, suggesting a potential inhibitory feedback mechanism. There were only two major ubiquitination sites in Ret51, Lys1060 and Lys1107, and the combined mutation of these lysines almost completely eliminated both the ubiquitination and degradation of Ret51. Ret9 was not ubiquitinated by the CD2AP·Cbl-3/c complex, suggesting that Ret9 was down-regulated by a fundamentally different mechanism. Taken together, these results suggest that only the SH3 domains of CD2AP were necessary to enhance the E3 ligase activity of Cbl-3/c toward Ret51.  相似文献   

6.
7.
The survival and functional maintenance of vertebrate neurons depends on the availability of specific neurotrophic factors. We studied the influence of neurotrophic support on responses of dopaminergic neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a neurotoxin known to damage the nigrostriatal dopaminergic pathway in humans and other mammals. Treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine caused decreases in levels of Ret, a tyrosine kinase receptor for glial cell line-derived neurotrophic factor (GDNF) in the striatum, under the condition in which tyrosine hydroxylase was moderately decreased and the GDNF family receptor alpha1, another receptor of GDNF that is the ligand-binding subunit, were unaffected. Down-regulation of Ret was also observed in dopamine-producing PC12 cells undergoing apoptosis induced by rotenone, another toxic substance for dopaminergic neurons, while other cellular components were not affected. Ret was also extremely vulnerable to other apoptotic inducing conditions. Taken together, these results indicate that Ret, an important signal molecule in dopaminergic neurons, may be down-regulated in the early stages of neuronal degeneration caused by various neurotoxic substances, and may lead to reduced neurotrophic influences.  相似文献   

8.
The peripheral somatosensory system overproduces neurons early in development followed by a period of cell death during final target innervation. The decision to survive or die in somatosensory neurons of the dorsal root ganglion (DRG) is mediated by target‐derived neurotrophic factors and their cognate receptors. Subsets of peripheral somatosensory neurons can be crudely defined by the neurotrophic receptors that they express: peptidergic nociceptors (TrkA+), nonpeptidergic nociceptors (Ret+), mechanoreceptors (Ret+ or TrkB+), and proprioceptors (TrkC+). A direct comparison of early developmental timing between these subsets has not been performed. Here we characterized the accumulation and death of TrkA, B, C, and Ret+ neurons in the DRG as a function of developmental time. We find that TrkB, TrkC, and Ret‐expressing neurons in the DRG complete developmental cell death prior to TrkA‐expressing neurons. Given the broadly defined roles of the neurotrophin receptor p75NTR in augmenting neurotrophic signaling in sensory neurons, we investigated its role in supporting the survival of these distinct subpopulations. We find that TrkA+, TrkB+, and TrkC+ sensory neuron subpopulations require p75NTR for survival, but proliferating progenitors do not. These data demonstrate how diverging sensory neurons undergo successive waves of cell death and how p75NTR represses the magnitude, but not developmental window of this culling. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 701–717, 2018  相似文献   

9.
Support of ageing neurons by endogenous neurotrophic factors such as glial cell line–derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) may determine whether the neurons resist or succumb to neurodegeneration. GDNF has been tested in clinical trials for the treatment of Parkinson disease (PD), a common neurodegenerative disorder characterized by the loss of midbrain dopaminergic (DA) neurons. BDNF modulates nigrostriatal functions and rescues DA neurons in PD animal models. The physiological roles of GDNF and BDNF signaling in the adult nigrostriatal DA system are unknown. We generated mice with regionally selective ablations of the genes encoding the receptors for GDNF (Ret) and BDNF (TrkB). We find that Ret, but not TrkB, ablation causes progressive and adult-onset loss of DA neurons specifically in the substantia nigra pars compacta, degeneration of DA nerve terminals in striatum, and pronounced glial activation. These findings establish Ret as a critical regulator of long-term maintenance of the nigrostriatal DA system and suggest conditional Ret mutants as useful tools for gaining insights into the molecular mechanisms involved in the development of PD.  相似文献   

10.
Glial cell line-derived neurotrophic factor (GDNF) family, consisting of GDNF, neurturin, artemin and persephin are distant members of the transforming growth factor-beta (TGF-beta) superfamily. Unlike other members of the TGF-beta superfamily, which signal through the receptor serine-threonine kinases, GDNF family ligands activate intracellular signalling cascades via the receptor tyrosine kinase Ret. GDNF family ligands first bind to the glycosylphosphatidylinositol (GPI)-anchored GDNF family receptor alpha (GFRalpha) and then the GDNF family ligand-GFRalpha complex binds to and stimulates autophosphorylation of Ret. Alternatively, a preassociated complex between GFRalpha and Ret could form the binding site for the GDNF family ligand. GFRalpha1, GFRalpha2, GFRalpha3 and GFRalpha4 are the physiological coreceptors for GDNF, neurturin, artemin and persephin, respectively. Although all GDNF family ligands signal via activated Ret, GDNF can signal also via GFRalpha1 in the absence of Ret. GPI-anchored GFRalpha receptors are localized in plasma membrane to lipid rafts. GDNF binding to GFRalpha1 also recruits Ret to the lipid rafts and triggers association with Src, which is required for effective downstream signalling, leading to differentiation and neuronal survival. GDNF family ligands are potent survival factors for midbrain dopamine neurons, motoneurons, noradrenergic neurons, as well as for sympathetic, parasympathetic and sensory neurons. However, for most neuronal populations, except for motoneurons, TGF-beta is required as a cofactor for GDNF family ligand signalling. Because GDNF and neurturin can rescue dopamine neurons in the animal models of Parkinson disease, as well as motoneurons in vivo, hopes have been raised that GDNF family ligands may be new drugs for the treatment of neurodegenerative diseases. GDNF also has distinct functions outside the nervous system, promoting ureteric branching in kidney development and regulating spermatogenesis.  相似文献   

11.
12.
Ret receptor tyrosine kinase is the signaling component of the receptor complex for the family ligands of the glial cell line‐derived neurotrophic factor (GDNF). Ret is involved in the development of enteric nervous system, of sympathetic, parasympathetic, motor and sensory neurons, and it is necessary for the post‐natal maintenance of dopaminergic neurons. Ret expression has been as well demonstrated on microglia and several evidence indicate that GDNF regulates not only neuronal survival and maturation but also certain functions of microglia in the brain. Here, we demonstrated that the plant lectin Griffonia (Bandeiraea) simplicifolia lectin I, isolectin B4 (IB4), commonly used as a microglial marker in the brain, binds to the glycosylated extracellular domain of Ret on the surface of living NIH3T3 fibroblasts cells stably transfected with Ret as well as in adult rat brain as revealed by immunoblotting. Furthermore, confocal immunofluorescence analysis demonstrated a clear overlap in staining between pRet and IB4 in primary microglia cultures as well as in adult rat sections obtained from control or post‐ischemic brain after permanent middle artery occlusion (pMCAO). Interestingly, IB4 staining identified activated or ameboid Ret‐expressing microglia under ischemic conditions. Collectively, our data indicate Ret receptor as one of the IB4‐reactive glycoconjugate accounting for the IB4 stain in microglia under physiological and ischemic conditions.  相似文献   

13.
Rai is a recently identified member of the family of Shc-like proteins, which are cytoplasmic signal transducers characterized by the unique PTB-CH1-SH2 modular organization. Rai expression is restricted to neuronal cells and regulates in vivo the number of postmitotic sympathetic neurons. We report here that Rai is not a common substrate of receptor tyrosine kinases under physiological conditions and that among the analyzed receptors (Ret, epidermal growth factor receptor, and TrkA) it is activated specifically by Ret. Overexpression of Rai in neuronal cell lines promoted survival by reducing apoptosis both under conditions of limited availability of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) and in the absence of Ret activation. Overexpressed Rai resulted in the potentiation of the Ret-dependent activation of phosphatidylinositol 3-kinase (PI3K) and Akt. Notably, increased Akt phosphorylation and PI3K activity were also found under basal conditions, e.g., in serum-starved neuronal cells. Phosphorylated and hypophosphorylated Rai proteins form a constitutive complex with the p85 subunit of PI3K: upon Ret triggering, the Rai-PI3K complex is recruited to the tyrosine-phosphorylated Ret receptor through the binding of the Rai PTB domain to tyrosine 1062 of Ret. In neurons treated with low concentrations of GDNF, the prosurvival effect of Rai depends on Rai phosphorylation and Ret activation. In the absence of Ret activation, the prosurvival effect of Rai is, instead, phosphorylation independent. Finally, we showed that overexpression of Rai, at variance with Shc, had no effects on the early peak of mitogen-activated protein kinase (MAPK) activation, whereas it increased its activation at later time points. Phosphorylated Rai, however, was not found in complexes with Grb2. We propose that Rai potentiates the MAPK and PI3K signaling pathways and regulates Ret-dependent and -independent survival signals.  相似文献   

14.
Establishment of limb innervation by motor neurons involves a series of hierarchical axon guidance decisions by which motor-neuron subtypes evaluate peripheral guidance cues and choose their axonal trajectory. Earlier work indicated that the pathway into the dorsal limb by lateral motor column (LMC[l]) axons requires the EphA4 receptor, which mediates repulsion elicited by ephrinAs expressed in ventral limb mesoderm. Here, we implicate glial-cell-line-derived neurotrophic factor (GDNF) and its receptor, Ret, in the same guidance decision. In Gdnf or Ret mutant mice, LMC(l) axons follow an aberrant ventral trajectory away from dorsal territory enriched in GDNF, showing that the GDNF/Ret system functions as an instructive guidance signal for motor axons. This phenotype is enhanced in mutant mice lacking Ret and EphA4. Thus, Ret and EphA4 signals cooperate to enforce the precision of the same binary choice in motor-axon guidance.  相似文献   

15.
The glial cell line-derived (GDNF) family of trophic factors, GDNF, neurturin, persephin and artemin, are known to support the survival and regulate differentiation of many neuronal populations, including peripheral autonomic, enteric and sensory neurons. Members of this family of related ligands bind to specific GDNF family receptor (GFR) proteins, which complex and signal through the Ret receptor tyrosine kinase. We showed previously that GDNF protein was detectable in olfactory sensory neurons (OSNs) in the olfactory neuroepithelium (ON). In this immunohistochemical study, we localized GDNF, neurturin, GFRα1, GFRα2 and Ret in the adult rat ON and olfactory bulb. We found that GDNF and Ret were widely expressed by immature and mature OSNs, while neurturin was selectively expressed in a subpopulation of OSNs zonally restricted in the ON. The GFRs had differential expression, with mature OSNs and their axons preferentially expressing GFRα1, whereas progenitors and immature neurons more avidly expressed GFRα2. In the bulb, GDNF was highly expressed by the mitral and tufted cells, and by periglomerular cells, and its distribution generally resembled that of Ret, with the exception that Ret was far more predominant on fibers than cell bodies. Neurturin, in contrast, was present at lower levels and was more restricted in its expression to the axonal compartment. GFRα2 appeared to be the dominant accessory protein in the bulb. These data are supportive of two members of this neurotrophic family, GDNF and neurturin, playing different physiological roles in the olfactory neuronal system.  相似文献   

16.
17.
The growth arrest-specific gene 1 (Gas1) protein has been proposed to function during development as an inhibitor of growth and a mediator of cell death and is also re-expressed in adult neurons during excitotoxic insult. Here we have demonstrated that the Gas1 protein shows high structural similarity to the glial cell-derived neurotrophic factor (GDNF) family receptors alpha, which mediate GDNF responses through the receptor tyrosine kinase Ret. We found that Gas1 binds Ret in a ligand-independent manner and sequesters Ret in lipid rafts. Signaling downstream of Ret is thus modified through a mechanism that involves the adaptor protein Shc as well as ERK, eventually blocking Akt activation. Consequently, when Gas1 is induced, Ret-mediated GDNF-dependent survival effects are compromised.  相似文献   

18.
19.
Glial cell line-derived neurotrophic factor (GDNF) is expressed in the gastrointestinal tract of the developing mouse and appears to play an important role in the migration of enteric neuron precursors into and along the small and large intestines. Two other GDNF family members, neurturin and artemin, are also expressed in the developing gut although artemin is only expressed in the esophagus. We examined the effects of GDNF, neurturin, and artemin on neural crest cell migration and neurite outgrowth in explants of mouse esophagus, midgut, and hindgut. Both GDNF and neurturin induced neural crest cell migration and neurite outgrowth in all regions examined. In the esophagus, the effect of GDNF on migration and neurite outgrowth declined with age between E11.5 and E14.5, but neurturin still had a strong neurite outgrowth effect at E14.5. Artemin did not promote neural migration or neurite outgrowth in any region investigated. The effects of GDNF family ligands are mediated by the Ret tyrosine kinase. We examined the density of neurons in the esophagus of Ret-/- mice, which lack neurons in the small and large intestines. The density of esophageal neurons in Ret-/- mice was only about 4% of the density of esophageal neurons in Ret+/- and Ret+/+ mice. These results show that GDNF and neurturin promote migration and neurite outgrowth of crest-derived cells in the esophagus as well as the intestine. Moreover, like intestinal neurons, the development of esophageal neurons is largely Ret-dependent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号