首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
红鳍笛鲷仔、稚鱼异速生长   总被引:3,自引:0,他引:3  
运用生态学和传统理论生物学的研究方法,对孵化后红鳍笛鲷(Lutjanus erythropterus)仔、稚鱼在早期生存和环境适应上的异速生长及器官优先发育生态学意义进行了研究,以期为红鳍笛鲷人工繁殖、育苗提供参考资料。以17日龄为红鳍笛鲷仔、稚鱼的区分时期,结果表明,红鳍笛鲷仔、稚鱼的感觉、呼吸摄食和游泳等器官快速分化,均存在异速生长现象。在头部器官中,吻长、口宽、眼径和头高在仔鱼期均为正异速生长,稚鱼期吻长为等速生长,口宽、眼径和头高为负异速生长。在身体各部位中,仔鱼期头长和体高为正异速生长,躯干部和尾长为负异速生长;稚鱼期体高和躯干长为正异速生长,头长和尾长为等速生长;在游泳器官中,仔鱼期红鳍笛鲷背鳍、腹鳍、尾鳍为正异速生长,胸鳍为等速生长,稚鱼期臀鳍为正异速生长,腹鳍、胸鳍和尾鳍为等速生长,背鳍为负异速生长。红鳍笛鲷这些关键器官的快速发育,使外源性营养开始后以最小的代谢损耗获得了生存能力的显著提升,对挑战和适应纷繁变换的外界压力具有重要的生态学意义。  相似文献   

2.
Dorsal iris from the eyes of adult Notophthalmus viridescens was transplanted into the blastema of regenerating limbs, subcutaneously in the limb or shoulder region, into the dorsal fin of larval newts and into the hindbrain of larval Ambystoma maculatum. The iris implants into the blastema regenerated lens vesicles or lenses with fibers in 40–75% of the cases. Multiple lenses were found in a few instances. No lenses developed from iris implants into the dorsal fin. Twenty percent of subcutaneous implants of iris formed lenses or lens vesicles, but lens regeneration from implants into the brain occurred only rarely. Denervation of the limb at the time of iris transplantation into the blastema greatly reduced the number of lenses regenerated. Studies on nerve fiber distribution in dorsal fin, subcutaneous areas, and denervated and innervated regenerating limbs, using the Bodian method, showed a general correlation between density of nerve fibers in the implant site and the incidence of lens regeneration from iris implants into that site. These results provide some evidence for a trophic action of nerve fibers on lens regeneration from the iris.  相似文献   

3.
眼斑双锯鱼仔稚鱼发育异速生长   总被引:1,自引:0,他引:1  
运用生态学和传统理论生物学的研究方法, 对孵化后眼斑双锯(Amphiprion ocellaris)仔、稚鱼在早期生存和环境适应上的异速生长及器官优先发育生态学意义进行了研究, 以期为眼斑双锯鱼人工繁殖和育苗提供参考资料。以11日龄为眼斑双锯鱼仔、稚鱼的区分时期, 结果表明, 眼斑双锯鱼仔、稚鱼的感觉、摄食和游泳等器官快速分化, 均存在异速生长现象。在头部器官中, 吻长、眼间距、口宽和头高在仔鱼期均为正异速生长, 吻至鳃裂前缘长和眼径为负异速生长。在身体各部位中, 仔鱼期体高、躯干长、尾长、尾柄长、尾柄高和体厚均为正异速生长, 仅头长为负异速生长; 在游泳器官中, 仔鱼期眼斑双锯鱼尾鳍、背鳍、胸鳍、腹鳍和臀鳍均为正异速生长。稚鱼期眼斑双锯鱼头部、躯干及游泳等各器官均为负异速生长。眼斑双锯鱼这些关键器官的异速发育, 对适应环境因子变化具有重要的生态学意义。  相似文献   

4.
A new freshwater goby, Rhinogobius wuyanlingensis, was collected from Wuyanling National Natural Conservation Area, Taishun, Zhejiang Province, China. The species can be distinguished from all congeneric species by the following unique combination of features: second dorsal fin rays modally I, 8; anal fin rays I, 8; pectoral fin rays modally 18; longitudinal scale series 30–32; predorsal scales 7–9; vertebral count 10 + 17 = 27; body always with six longitudinal pinkish orange to grayish brown lines from dorsal to ventral region in male; cheek spotless; branchiostegal membrane deep grayish with 6–7 long, transverse deep red stripes in male; chin always deep grayish; first dorsal fin with two long black blotches on membranes anterior to third spinous ray in male; second dorsal fin whitish with three to four horizontal rows of light spots in male; caudal fin base with a large blackish-brown spot; and pectoral fin with a horizontal, median blackish brown line. An artificial key to all five nominal species with a high vertebral count (27–29) from Zhejiang Province from China is also provided.  相似文献   

5.
Roles of wingless in patterning the larval epidermis of Drosophila.   总被引:12,自引:0,他引:12  
The larval epidermis of Drosophila shows a stereotyped segmentally repeating pattern of cuticular structures. Mutants deficient for the wingless gene product show highly disrupted patterning of the larval cuticle. We have manipulated expression of the wg gene product to assess its role in this patterning process. We present evidence for four distinct phases of wg function in epidermal cells: (1) an early requirement in engrailed-expressing cells to establish and maintain stable expression of en, (2) a discrete period when wg and en gene products act in concert to generate positional values in the anterior portion of the ventral segment and all values of the dorsal and lateral epidermis, (3) a progressive function (dependent on prior interaction with the en-expressing cells) in conferring positional values to cells within the posterior portion of the segment, and (4) a late continuous requirement for maintaining some ventral positional values.  相似文献   

6.
A new species of blenny,Atrosalarias hosokawai is described on the basis of 15 specimens from the western Pacific. It is distinguished from the only known congeneric species,A. fuscus (=A. fuscus fuscus+A. fuscus holomelas), by the following: supraorbital cirrus broad and flat (vs. slender and thread-like inA. fuscus); dorsal fin broadly contacting caudal fin (vs. narrow contact); anal fin narrowly contacting caudal fin (vs. usually free or (rarely) very narrow contact); posteriormost dorsal and anal fin rays long (vs. short); first or posteriormost soft dorsal fin ray shortest (vs. posteriormost ray shortest); first soft anal fin ray shortest (vs. posteriormost ray shortest); caudal fin rays branched in specimens over 36.0 mm SL (vs. unbranched); a large dark spot on base of pectoral fin absent (vs. present or absent); a red margin on anterior dorsal fin absent (vs. present). Futhermore,A. hosokawai differs fromA. f. fuscus in having a lower number of dorsal fin spines (ten vs. eleven) and geographical distribution (western Pacific Ocean vs. Indian Ocean and Red Sea). AlthoughA. hosokawai occurs sympatrically withA. f. holomelas, it can be further distinguished from the latter in lacking a large dark spot on base of pectoral fin.  相似文献   

7.
8.
A total of 515 larval and juvenileSparus sarba (8.2–17.8 mm TL) was collected at semimonthly intervals with a small seine in surf zones of Tosa Bay during the period of May 1981 to May 1982. They had morphological characteristics common to the larvae and juvenile of Sparinae, but were distinguished from the others by 24 dorsal and 14 anal fin rays, the first soft ray of pelvic fin not elongated and small melanophores along the dorsal margin occurring first on the caudal peduncle. They occurred in surf zones of Tosa Bay in two separate seasons, from late March to late May, and from late November to late January, being most abundant in April and May. In past studies using traditional larval nets or minnow-nets in coastal or shallow waters of Tosa Bay, larval and juvenileS. sarba were not reported. It seems that their distribution is limited in extremely shallow waters such as surf zones.  相似文献   

9.
Aiming to provide data on the biology of Leiarius marmoratus, which will aid in its production in captivity, as well as in studies for its preservation in the environment, this work had as objectives: analyze and describe main morphological alterations during larval ontogeny of the species. We analyzed 205 individuals, obtained by induced reproduction (Colpani Pisciculture) and kept in CEPTA/ICMBIO, Pirassununga, São Paulo, Brazil. Analyses were performed from hatching moment to 30th day. The specimens were classified into two periods: larval (Stages: vitelline, pre‐flexion, flexion, post‐flexion) and juvenile. Hatched larvae showed ident chromatophores only at anterior and posterior extremities of yolk sac. The standard length ranged from 2.16 mm (yolk) to 28.84 mm (Youth). Dorsal fin rays were initially observed at flexion stage (12–14 rays). Major alterations occurred during post‐flexion/juvenile stage, when dorsal, pectoral, pelvic, anal, and caudal fins were observed and pigmentation intensified throughout the lateral region, forming bands in the body, one between the end of the head and beginning of dorsal to pelvic fin, and another one beginning at dorsal to caudal peduncle and four longitudinal at the head.  相似文献   

10.
The median fins of fishes are key features of locomotor morphology which function as complex control surfaces during a variety of behaviors. However, very few studies have experimentally assessed median fin function, as most workers focus on axial structures. In particular, the dorsal fin of many teleost fishes possesses both spiny anterior and soft posterior portions which may function separately during locomotion. We analyzed the function of the soft region of the dorsal fin and of the dorsal inclinator (Di) muscles which are the primary muscles responsible for lateral flexion. We used electromyography to measure in vivo Di activity, as well as activity of the red myomeric muscles located at a similar longitudinal position. We quantified motor patterns during four locomotor behaviors: braking and three propulsive behaviors (steady swimming, kick and glide swimming, and C-starts). During the three propulsive swimming behaviors, the timing of Di activity was more similar to that of ipsilateral red myomeric muscle rather than to contralateral myomeric activity, whereas during braking the timing of activity of the Di muscles was similar to that of the contralateral myomeric musculature. During the three propulsive behaviors, when the Di muscles had activity, it was consistent with the function of stiffening the soft dorsal fin to oppose its tendency to bend as a result of the body being swept laterally through the water. In contrast, activity of the Di muscles during braking was consistent with the function of actively flexing the soft dorsal fin towards the side of the fish that had Di activity. Activity of the Di muscles during steady speed swimming was generally sufficient to resist lateral bending of the soft dorsal fin, whereas during high speed kick and glide swimming and C-starts, Di activity was not sufficient to resist the bending caused by resistive forces imposed by the water. Cumulative data from all four behaviors suggest that the Di muscles can be activated independently relative to the myomeric musculature rather than having a single phase relationship with the myomeric muscle common to all of the observed behaviors. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Ray‐finned fishes actively control the shape and orientation of their fins to either generate or resist hydrodynamic forces. Because of the emergent mechanical properties of their segmented, bilaminar fin rays (lepidotrichia), and actuation by multiple muscles, fish can control the rigidity and curvature of individual rays independently, thereby varying the resultant forces across the fin surfaces. Expecting that differences in fin‐ray morphology should reflect variation in their mechanical properties, we measured several musculoskeletal features of individual spines and rays of the dorsal and anal fins of bluegill sunfish, Lepomis macrochirus, and assessed their mobility and flexibility. We separated the fin‐rays into four groups based on the fin (dorsal or anal) or fin‐ray type (spine or ray) and measured the length of the spines/rays and the mass of the three median fin‐ray muscles: the inclinators, erectors and depressors. Within the two ray groups, we measured the portion of the rays that were segmented vs. unsegmented and branched vs. unbranched. For the majority of variables tested, we found that variations between fin‐rays within each group were significantly related to position within the fin and these patterns were conserved between the dorsal and anal rays. Based on positional variations in fin‐ray and muscle parameters, we suggest that anterior and posterior regions of each fin perform different functions when interacting with the surrounding fluid. Specifically, we suggest that the stiffer anterior rays of the soft dorsal and anal fins maintain stability and keep the flow across the fins steady. The posterior rays, which are more flexible with a greater range of motion, fine‐tune their stiffness and orientation, directing the resultant flow to generate lateral and some thrust forces, thus acting as an accessory caudal fin. J. Morphol., 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
A new dragonet,Foetorepus masudai, is described from southern Japan. This is the species that Nakabo (1983) mistakenly identified asFoetorepus delandi. It is characterized by large eye, filamentous 1st dorsal spine in adult males, 1st dorsal fin without an obvious dark mark, a dark spot on upper origin of pectoral fin and a large dark blotch on posterior half of pelvic fin. A revised key to the species ofFoetorepus found in Japan is included.  相似文献   

13.
Specimens of a new genus and species of the stichaeid fish,Leptostichaeus pumilus, were collected from the Okhotsk Sea off Hokkaido in Japan. The present new genus and species clearly differs from all the other genera and species of the stichaeid fishes in the following characters: 3 or 4 pectoral fin rays; 10 or fewer caudal principal rays; 79–82 dorsal spines; no pelvic fin; last interneural spine supporting a single dorsal spine; infraorbital, occipital and lateral line canals absent; moderate size of dorsal spine shorter than eye diameter; membranes of dorsal and anal fins widely connected with caudal fin; a large black spot divided by a yellow band present just above gill cover.  相似文献   

14.
The development of the vasculature of the pectoral fin in the Australian lungfish, Neoceratodus forsteri, was studied by the dye-injection method. Only a single primitive subclavian artery appears from the dorsal aorta for the fin anlage, and it passes laterally through the postaxial region of the structure. The venous channel draining into the posterior cardinal vein is located in the preaxial region medially. As development proceeds, the arteriovenous arrangement in the pectoral fin anlage changes as follows: 1) one artery and one venous plexus, 2) two arteries and one vein, 3) three arteries and one vein, 4) four arteries and one vein, 5) three arteries and two veins, and 6) two arteries (radial and ulnar) and three veins (radial, ulnar, and ulnar marginal). The fin anlage through embryonic first rotation has gradually changed its postaxial margin to face dorsally and its preaxial margin to face ventrally. The second rotation causes the original preaxial margin to become dorsal and the original postaxial margin to become ventral. As a result, the radial and ulnar arteries are observed in the dorsal and ventral regions, respectively, in the medial side of the fin instead of in the lateral side as seen in the previous stage.  相似文献   

15.
The cichlid Hypsophrys nicaraguensis is a popular fish known as butterfly, and despite its widespread use as pets, little is known about its reproductive biology. In order to contribute to this knowledge, the study describes the relevant larval development characteristics, from adult and larval cultures in captivity. Every 12h, samples of larvae were collected and observed under the microscope for larval stage development, and every 24h morphometric measurements were taken. Observations showed that at 120h, some larvae had swimming activity and the pectoral fins development was visible; at 144h, the dorsal fin appear and all larvae started food intake; at 168h, the formation of anal fins begins, small rudiments of pelvic fins emerge, the separation of caudal fin from anal and dorsal fins starts, and the yolk sac is reabsorbed almost completely; at 288h, the pelvic fins starts to form; at 432h, the rays and spines of dorsal and anal fins can be distinguished, both the anal and the dorsal fins have the same number of spines and rays as in adults. After 480h larvae have the first scales, ending the larval stages and starting the transformation to fingerlings. Larvae were successfully fed with commercial diet.  相似文献   

16.
2012年9月,在中国南沙群岛渚碧礁采集到猪齿鱼属标本1尾,经鉴定为中国新纪录种——腰纹猪齿鱼(Choerodon zosterophorus)。本种的主要鉴别特征为:吻稍突出;背鳍ⅩⅢ-6;臀鳍Ⅲ-10;体被中大圆鳞,侧线完全,侧线鳞片27;从最后几个背鳍鳍棘基部下侧至胸鳍基部上侧之间有1条较宽白带;背侧有1较大黑色斑点,白斑背鳍后端处腹鳍位置上背部也有1较大黑点,通常在白斑处以黑色边缘线形式向前腹端延伸至腹部后侧;成体尾鳍为灰色。  相似文献   

17.
Heritability of male secondary sexual traits in feral guppies in Japan   总被引:5,自引:0,他引:5  
Secondary sexual traits of male guppies show remarkable geographic variation, and male guppies can flexibly change the conspicuousness of their sexual traits within a few generations when they are introduced into new habitats. We examined the degree of conspicuousness and heritabilities of male secondary sexual traits in a feral guppy population in Okinawa, a subtropical island of Japan. Male guppies in this population showed high variation of their sexual traits such as dorsal and caudal fin lengths and red-orange color spot patterns on their bodies. Offspring–parent regressions revealed significant heritabilities of male body size, dorsal and caudal fin lengths, and the number and relative area of orange spots. Especially, the high heritability of the relative orange spot area of sons compared to that of fathers suggests some Y chromosome-linked contribution of the trait. On the other hand, coloration (hue and saturation) of orange spots did not show significant inheritance, probably because most components of orange spot coloration may be condition-dependent traits. These results compared with previous work in native guppy populations suggest female mate preferences based upon these male secondary sexual traits and low predation pressure in this population. Received: June 19, 2000 / Accepted: September 18, 2000  相似文献   

18.
Pethia sanjaymoluri, a new cyprinid, is described from the Pavana and Nira tributaries of Bhima River, Krishna drainage, Maharashtra, India. It can be distinguished from congeners by a combination of characteristics that includes an incomplete lateral line, absence of barbels, upper lip thick and fleshy, 23–25 lateral series scales, 7–12 lateral‐line pored scales, 10 predorsal scales, 11–14 prepelvic scales, 17–20 pre‐anal scales, 4½ scales between dorsal‐fin origin and lateral line, four scales between lateral line and pelvic‐fin origin, 8–15 pairs of serrae on distal half of dorsal‐fin spine, 12–14 branched pectoral‐fin rays, 4 + 26 total vertebrae, 4 + 5 predorsal vertebrae, 4 + 13 abdominal vertebrae, 13 caudal vertebrae and a unique colour pattern comprising a humeral spot positioned below the lateral line and encompassing the third and fourth lateral‐line scales and one scale below, one caudal spot on 17th–21st lateral‐line scales with a yellow hue on its anterior side and apical half of dorsal fin studded with melanophores making the fin tip appear black. Genetic analysis based on the mitochondrial cytochrome b gene sequence suggests that the species is distinct from other known species of Pethia for which data are available.  相似文献   

19.
Sexing cetaceans usually requires time-consuming observation, or genetic sexing via biopsy sampling or skin swabbing. We developed a method to determine the sex of bottlenose dolphins ( Tursiops sp.) in Doubtful Sound, Fiordland, using laser-metric dorsal fin photographs. From dorsal fin photographs of 43 bottlenose dolphins of known sex (25 females, 18 males) we analyzed the shape, proportion of fin area covered in scarring and epidermal lesions, and the number of fin nicks. Males had significantly higher rates of scarring ( P < 0.001) and dorsal fin nicks ( P < 0.01) than females, whereas the severity of epidermal lesions was higher in females ( P < 0.05). A logistic regression applied to all measured variables, and measurements of dorsal fin size, indicated that the proportion of dorsal fin scarring ( P < 0.001), number of fin nicks ( P < 0.01), and dorsal fin surface area ( P < 0.01) were significant variables and together correctly predicted the sex of 93% (40/43) of the dolphins. The classification function may not be applicable to other populations due to geographic variation in bottlenose dolphin morphology and social structure. The method is quick and noninvasive to apply, and further increases the value of dorsal fin photo-identification pictures.  相似文献   

20.
Morphological changes in the tunic layers and migration of the test cells during swimming period in the larva of the ascidian, Ciona intestinalis , were observed by light and electron microscopy. The swimming period was divided into three stages. In stage 1, further formation of juvenile tunic layer started only in the larval trunk and neck region. In stage 2, the layer became swollen in the ventral and dorsal sides of the neck region and in stage 3, the swelling expanded backward. Concomitantly with these changes, the outermost larval tunic layer (outer cuticular layer), which had been formed before hatching, also swelled in the neck region in stage 2 and formed two humps in stage 3, although the layer did not change in the tail region during the swimming period. Test cells that were present over the entire larval tunic layer in stage 1 began to move from the surface of the fin toward that of the side of the body in stage 2, and finally gathered to form six bands running radially from the anterior end to the posterior end of the trunk region and aligned along the lateral sides of body in the tail region in stage 3. In electron microscopic observations, pseudopodia protruding from the test cells invaded the larval tunic, following which they extended proximate to the juvenile tunic in the trunk region. In the tail region, which had no juvenile tunic layer as that described, the pseudopodia invaded and remained adjacent to the surface of the epidermis or the sensory cilia protruded from the epidermis. Metamorphosis of the larvae, further tunic formation, degradation of adhesive papilla, attachment of larva to the substratum and tail resorption commenced after these morphological changes occurred. The possible role of the test cells in metamorphosis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号