首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Many years preclinical and clinical anatomic, pharmacologic, and physiologic studies suggest that SP- and opioid-expressing neurons produce opposite biological effects at the spinal level, i.e., nociception and antinociception, respectively. However, in certain circumstances intrathecally administered SP is capable of reinforcing of spinal morphine analgesia and may therefore function as an opioid adjuvantin vivo. The SP dose-response curve of spinally administered SP follows a bell-shaped or inverted-U configuration, permitting pharmacological dissociation of opioid-potentiating and analgesic properties of SP from traditional hyperalgesic effects seen at significantly higher concentrations. This analgesic effect is blocked by naloxone but unaffected by transection of the spinal cord, thus demonstrating the lack of supraspinal modulation. The present report briefly describes both reinforcing and opposing interactions between multiple opioid systems and substance P at the spinal level. We propose that a likely mechanism underlying SP-mediated enhancement of opioid analgesia is the ability of SP to release endogenous opioid peptides within the local spinal cord environment.  相似文献   

2.
脊髓中P物质参与电针镇痛的研究   总被引:12,自引:0,他引:12  
本研究发现,低频(2Hz)电针刺激时大鼠脊髓中P物质免疫活性(SP-ir)含量减少,中频(15Hz)、高频(100Hz)和变频(2/15Hz)刺激时SP-ir含量增多。脊髓蛛网膜下腔(i.t.)注射非肽类SP(NKI)受体拮抗剂CP96345和RP67580均能阻断中频、高频和变频的电针镇痛。i.t.注射阿片拮抗剂纳洛酮阻断低频和中频刺激时SP-ir含量的变化。结果提示,脊髓SP-ir在低频时释放  相似文献   

3.
The neuropeptide Substance P (SP), that has a high affinity for the neurokinin 1 (NK1) receptor, is involved in modulation of pain transmission. Although SP is thought to have excitatory actions and promote nociception in the spinal cord, the peptide induces analgesia at the supraspinal level. The aim of this study was to evaluate the role of supraspinal SP and the NK1 receptor in inflammatory pain induced by injection of carrageenan in the hind paw of the rat. There are two nociceptive behavioral responses associated with this pain state: mechanical allodynia and heat hyperalgesia. Because the NK1 receptor colocalizes with the MOP receptor in supraspinal sites involved in pain modulation, we also decided to study the possible involvement of the opioid system on SP-induced analgesia. We found that treatment with SP, at doses of 3.5, 5 and 7 μg/5 μl/rat i.c.v., clearly showed inhibition of allodynia and hyperalgesia. Pretreatment with the selective NK1 antagonist L-733,060 (10mg/kg i.p.) blocked the SP-induced analgesia, suggesting the involvement of the NK1 receptor. This SP-induced analgesia was significantly reduced by administration of the opioid antagonist naloxone (3mg/kg s.c.). This reduction occurred when SP was administered either before or after the carrageenan injection. These results suggest a significant antinociceptive role for SP and the NK1 receptor in inflammatory pain at the supraspinal level, possibly through the release of endogenous opioids.  相似文献   

4.
孤啡肽受体是继经典的mu阿片受体、kappa阿片受体和delta阿片受体之后发现的又一类新型阿片受体,不仅在结构上具有同上述阿片受体相类似的特征,而且可介导相同或相似的细胞内生物学反应.孤啡肽受体对痛觉反应具有独特的调控模式.一方面,在背根神经节以及脊髓水平,孤啡肽受体主要介导镇痛效应,并且在脊髓水平还与其他阿片受体有协同效应以增强镇痛效果.另一方面,在脊髓上水平,孤啡肽受体往往产生痛敏而拮抗了其他阿片受体的镇痛效应.此外孤啡肽受体对痛觉的调控在不同物种间也表现一定的差异性.这为进一步阐明内源性阿片系统的痛觉调控作用提供一定的理论依据.  相似文献   

5.
These studies examined the effect of cocaine on the analgesia produced by systemically and centrally administered opioid agonists. Cocaine (50 mg/kg, s.c.) increased the analgesic potency of systemic, ICV and IT morphine; and the ICV and IT analgesic effects of the delta selective peptide, [D-Pen2,D-Pen5]enkephalin (DPDPE). Cocaine also increased the analgesic potency of the mu selective ligand [D-Ala2,NMePhe4,Gly-ol5]enkephalin (DAGO) administered ICV. However, cocaine did not alter the ED50 for IT DAGO. GC-MS studies indicated that brain cocaine concentration was approximately 3.0 micrograms/g wet weight 45 min following s.c. administration. These results suggest that cocaine-induced increases in opioid analgesic potency are mediated at brain mu and delta receptors and spinal mu receptors. Furthermore, there might be functional differences between spinal and supraspinal sites at which DAGO produces analgesia.  相似文献   

6.
电针引起脊髓P物质释放的频率依赖性   总被引:20,自引:1,他引:19  
沈上  边景檀 《生理学报》1996,48(1):89-93
我室以往的研究表明,不同频率的电针可引起脊髓释放不同种类的阿片肽。本工作观察P物质(SP)释放的频率依赖性,电针频率选择2,4,8,15,30和100Hz,分别收集电针期间及电针前后各30min的脊髓灌流液,通过放射免疫方法测定大鼠电针有效组和电针无效组P物质免疫活性(SP-ir).结果如下:(1)电针有效组:2Hz引起SP-ir降低,与电针前相比,P<0.01;4Hz电针前后SP-ir比较,无统计学意义;8,15,30,100Hz时SP-ir均增加(P<0.01),其中15Hz时SP增加最多(P<0.001),表明刺激引起SP释放有频率依赖性。(2)电针无效组:不论应用何种频率,电针前后脊髓灌流液中SP-ir变化不大(均P>0.05)。提示,电针时脊髓液中SP含量变化与镇痛效果有密切关系。  相似文献   

7.
Electrostimulatory forms of therapy can reduce angina that arises from activation of cardiac nociceptive afferent fibers during transient ischemia. This study sought to determine the effects of electrical stimulation of left thoracic vagal afferents (C(8)-T(1) level) on the release of putative nociceptive [substance P (SP)] and analgesic [dynorphin (Dyn)] peptides in the dorsal horn at the T(4) spinal level during coronary artery occlusion in urethane-anesthetized Sprague-Dawley rats. Release of Dyn and SP was measured by using antibody-coated microprobes. While Dyn and SP had a basal release, occlusion of the left anterior descending coronary artery only affected SP release, causing an increase from lamina I-VII. Left vagal stimulation increased Dyn release, inhibited basal SP release, and blunted the coronary artery occlusion-induced release of SP. Dyn release reflected activation of descending pathways in the thoracic spinal cord, because vagal afferent stimulation still increased the release of Dyn after bilateral dorsal rhizotomy of T(2)-T(5). These results indicate that electrostimulatory therapy, using vagal afferent excitation, may induce analgesia, in part, via inhibition of the release of SP in the spinal cord, possibly through a Dyn-mediated neuronal interaction.  相似文献   

8.
万涛  郑军 《生命的化学》2021,(2):361-367
纳布啡是一种新型的菲族镇痛药,属于混合型阿片类受体激动/拮抗剂,可在脊髓水平激动κ受体发挥强效的镇痛效果,其镇痛作用起效迅速、药效持久、疗效确切;同时由于纳布啡独特的部分μ受体拮抗特性,使其与吗啡相比,在发挥镇痛作用的同时呼吸抑制轻、血流动力学平稳以及恶心呕吐、皮肤瘙痒、成瘾性等不良反应发生率更低,因此,纳布啡在围手术期镇痛和临床麻醉等多个领域有着广阔的应用前景。现结合纳布啡独特的药代动力学、药理学特点及作用机制,对纳布啡在围手术期镇痛的研究进展作一综述,以期为临床上合理、有效镇痛提供理论参考和实践依据。  相似文献   

9.
Cichewicz DL 《Life sciences》2004,74(11):1317-1324
Cannabinoids and opioids both produce analgesia through a G-protein-coupled mechanism that blocks the release of pain-propagating neurotransmitters in the brain and spinal cord. However, high doses of these drugs, which may be required to treat chronic, severe pain, are accompanied by undesirable side effects. Thus, a search for a better analgesic strategy led to the discovery that delta 9-tetrahydrocannabinol (THC), the major psychoactive constituent of marijuana, enhances the potency of opioids such as morphine in animal models. In addition, studies have determined that the analgesic effect of THC is, at least in part, mediated through delta and kappa opioid receptors, indicating an intimate connection between cannabinoid and opioid signaling pathways in the modulation of pain perception. A host of behavioral and molecular experiments have been performed to elucidate the role of opioid receptors in cannabinoid-induced analgesia, and some of these findings are presented below. The aim of such studies is to develop a novel analgesic regimen using low dose combinations of cannabinoids and opioids to effectively treat acute and chronic pain, especially pain that may be resistant to opioids alone.  相似文献   

10.
The aim of the study was to test whether the synthesis of substance P (SP) and that of its receptor (also known as NK1 receptor) are coordinately regulated after chronic pharmacologic intervention in two neural systems, the spinal cord and basal ganglia. In one set of experiments, capsaicin was administered subcutaneously during the early postnatal period (day 3 after birth) to induce degeneration of afferent sensory neurons in the spinal cord. In the other set of experiments, interruption of dopaminergic transmission was achieved by two methods: (a) The neurotoxin 6-hydroxydopamine was used to denervate dopaminergic neurons during the early postnatal period, and (b) haloperidol was used in adult animals to block dopaminergic transmission by receptor blockade. The spinal cord, striatum, or both were used for the quantification of tachykinin [SP and neurokinin A (NKA)] and opioid peptides [[Met5]-enkephalin (ME) and dynorphin A (1-8) (DYN)] by radioimmunoassays. The abundance of total SP-encoding preprotachykinin (PPT) mRNA and SP receptor (SPR) mRNA in spinal cord (C5 to T1 segments), striatum, or microdissected substantia nigra was determined by northern blot or solution hybridization analysis. Amines and their acid metabolites were quantified by HPLC. Capsaicin administration (subcutaneously) during the early postnatal period increased latency in a hot-plate test, decreased SP and NKA levels, increased levels of PPT mRNAs, and did not affect SPR mRNA levels in the spinal cord. Intraspinal SP systems may attempt to compensate for the loss of afferent SP input, whereas spinal cord receptor mRNA levels do not appear to be altered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
This article reviews sex differences in opiate analgesic and related processes as part of a Special Issue in Hormones and Behavior. The research findings on sex differences are organized in the following manner: (a) systemic opioid analgesia across mu, delta and kappa opioid receptor subtypes and drug efficacy at their respective receptors, (b) effects of the activational and organizational roles of gonadal steroid hormones and estrus phase on systemic analgesic responses, (c) sex differences in spinal opioid analgesia, (d) sex differences in supraspinal opioid analgesia and gonadal hormone effects, (e) the contribution of genetic variance to analgesic sex differences, (f) sex differences in opioid-induced hyperalgesia, (g) sex differences in tolerance and withdrawal-dependence effects, and (h) implications for clinical therapies.  相似文献   

12.
病理性疼痛的分子机制   总被引:2,自引:0,他引:2  
张旭 《生命科学》2008,20(5):707-708
持续性或慢性疼痛是很多患者的主要描述症状。然而,现在的治疗手段还不能充分解决某些疼痛或会引起不能忍受的副作用。近来疼痛生物学者阐明了大量的参与疼痛发生和维持的细胞和分子活动。如何更好的理解这些分子活动的机制将有助于发展高效的,特异性的治疗手段。背根神经节中小细胞神经元向脊髓传递温觉和伤害性信息的感觉传递。这些神经元的外周突感受生理性和化学性刺激后,可以在脊髓背角的中枢突通过突触囊泡和大致密性囊泡释放兴奋性的神经递质和神经肽。这种兴奋性突触传递可以被一些抑制因子调控如脊髓中间神经元和下行系统中分泌的阿片肽、GABA、甘氨酸、5-羟色胺。本文将回顾脊髓抑制性系统所取得的一些研究进展,将重点介绍在阿片受体转运,阿片镇痛以及吗啡耐晋研究中的进展,这些发现可能的治疗前景也会一并讨论。  相似文献   

13.
Sun XC  Li WB  Li SQ  Li QJ  Chen XL  Ai J 《生理学报》2003,55(6):677-683
探讨P物质(substance P,SP)对脊髓一氧化氮合酶(nitric oxide synthase,NOS)表达和一氧化氮(nitric oxide,NO)生成的影响。实验用热甩尾法测定大鼠痛阈的变化,分别应用NADPH-d组织化学法和硝酸还原法测定大鼠脊髓内NOS表达和NO生成的变化。结果显示,鞘内注射神经激肽-1受体(neurokinin-1 receptor,NK-1)激动剂[Sar^9,Met(O2)^11]-substance P(Sar-SP)可使大鼠痛阈降低,脊髓后角浅层和中央管周围灰质内NOS表达增强,脊髓腰膨大部位NO生成增多;预先鞘内注射非选择性NK-1受体拮抗剂[D—Arg^1,D-Trp^7,9,Leu^11]-substance P(spantide)可抑制上述变化。结果表明,SP可促进脊髓内NOS表达和NO生成。  相似文献   

14.
Pain thresholds are increased following central administration of arginine vasopressin (AVP), an effect which appears not to be mediated through opioid analgesic processes. In addition to magnocellular projections to the posterior lobe of the pituitary gland and parvocellular projections to the zona externa of the median eminence, the paraventricular nucleus (PVN) of the hypothalamus contains VP parvocellular neurons which also project to extrahypothalamic structures involved in pain inhibition. The present study examined whether AVP analgesia as measured by the tail-flick test was altered in animals with lesions placed in the PVN at either 7 or 35 days after surgery. VP levels in the pons-medulla and the lumbo-sacral spinal cord were measured by radioimmunoassay, as well as VP-like immunoreactivity in the PVN and spinal cord with immunocytochemistry. Lesions placed in the PVN eliminated AVP analgesia on the tail-flick test at both 7 and 35 days after surgery, and decreased radioimmunoassayable VP by 59% in the lumbo-sacral spinal cord and 36% in the pons-medulla. The extent of the lesions ranged from complete destruction of the PVN to partial sparing of ventro-medial PVN cells with VP-like immunoreactivity. These data indicate that the PVN is a critical structure for the integrity of AVP analgesia.  相似文献   

15.
Analgesia induced by intrathecal injection of dynorphin B in the rat   总被引:3,自引:0,他引:3  
J S Han  G X Xie  A Goldstein 《Life sciences》1984,34(16):1573-1579
A dose-dependent analgesic effect of intrathecally injected dynorphin B was observed in rats using the tail flick as nociceptive test. Intrathecal injection of 20 nmol of dynorphin B increased the tail flick latency by 90 +/- 23%, an effect that lasted about 90 min. For the same degree of analgesia, dynorphin B was 50% more potent than morphine on a molar basis. The analgesic effect of this dose of dynorphin B was partially blocked by 10 mg/kg, but not by 1 mg/kg, of subcutaneous naloxone, showing a relative resistance to naloxone reversal as compared with morphine analgesia. The analgesia produced by dynorphin B was unchanged in morphine-tolerant rats but was significantly decreased in rats tolerant to ethylketazocine. These results suggest that dynorphin B produces its potent analgesic effect by activation of kappa rather than mu opioid receptors in the rat spinal cord.  相似文献   

16.
Pain and neurotransmitters   总被引:5,自引:0,他引:5  
1. To study physiological roles of substance P (SP), gamma-aminobutyric acid (GABA), enkephalins and other endogenous substances, we developed several kinds of isolated spinal cord preparations of newborn rats. 2. In these preparations, various slow responses of spinal neurons evoked by stimulation of primary afferent C fibers were depressed by a tachykinin antagonist, spantide. These results together with many other lines of evidence suggest that SP and neurokinin A serve as pain transmitters in a subpopulation of primary afferent C fibers. 3. Some C-fiber responses in various isolated spinal cord preparations were depressed by GABA, muscimol, and opioid peptides. In contrast, bicuculline (GABA antagonist) and naloxone (opioid antagonist) potentiated the "tail pinch potential," i.e., a nociceptive response of the ventral root evoked by pinch stimulation of the tail in isolated spinal cord-tail preparation of the newborn rat. The latter results support the hypothesis that some primary afferents activate inhibitory spinal interneurons which release GABA and enkephalins as transmitters to modulate pain inputs.  相似文献   

17.
强啡肽A和CCK—8对大鼠脊髓突触小体摄取^45Ca的影响   总被引:1,自引:0,他引:1  
王晓京  王峻峰 《生理学报》1990,42(3):226-232
为了探讨血管紧张素Ⅱ(AⅡ)和八肽胆囊收缩素(CCK-8)这两种肽的抗阿片作用机理,本实验中观察了三种阿片类物质(吗啡、强啡肽和 DPDPE)和两种抗阿片物质(AⅡ和 CCK-8)对大鼠脊髓突触小体摄取~(45) Ca 的影响。结果表明:(1)在脊髓腹柱突触小体上,10nmol/L—1μmol/L 的吗啡、强啡肽 A(Dyn A)和 DPDPE 对~(45)Ca 摄取均有较弱的抑制作用;(2)CCK-8在浓度高达lμmol/L 时对~(45)Ca 摄取有较弱的抑制作用;(3)AⅡ在浓度高达lμmol/L时也不影响腹柱突触小体摄取~(45)Ca;(4)在背柱的突触小体制备中,上述阿片物质中 Dyn A 对~(45)Ca 摄取有较强的抑制作用,并被 k 受体阻断剂 nor-BNI 所阻断。10和100nmol/L 的 CCK-8能翻转lμmol/L Dyn A 对~(45)Ca 摄取的抑制作用;(5)A Ⅱ不能翻转Dyn A 的抑制作用。以上结果提示,CCK-8阻断 Dyn A 抑制脊髓背柱突触小体摄取 Ca~(2+)的作用可能是其行为学中抗阿片作用的机理之一。AⅡ对脊髓 Ca~(2+)摄取和 Dyn A 抑制脊髓 Ca~(2+)摄取的作用皆无影响,与行为学中观察到的 AⅡ在脊髓内不能对抗阿片镇痛的现象一致,进一步说明 CCK-8和AⅡ拮抗阿片类物质对神经末梢 Ca~(2+)摄取的影响可能是其抗阿片作用的重要机理之一。  相似文献   

18.
Substance P (SP) injected intracerebroventricularly (ICV) into rabbits caused dose-related thermal analgesia with the maximum effect after 2 micrograms. The analgesia was measured by timing the withdrawal of the rabbit's ear from an infrared beam. Equimolar amounts of the related peptides physalaemin and eledoisin-related peptide also caused analgesia, but the SP N-terminal fragment (1-9) was inactive. This suggests that the analgesic message of SP resides within the C-terminal fragment. The analgesia caused by each peptide developed more rapidly but did not last as long as that after central injection of beta-endorphin. In separate experiments, 2 micrograms SP injected ICV increased blood pressure and decreased heart rate. The analgesic, bradycardic and pressor responses to central administration of SP were opposite to effects of peripherally administered SP, described previously. These results indicate that the effect induced by SP depends upon its specific neuroanatomical site of action.  相似文献   

19.
Abstract: This laboratory has previously reported that the maternal opioid analgesia associated with pregnancy and parturition is mediated, at least in part, by a maternal spinal cord dynorphin/κ opioid system. This analgesia is accompanied by an increase in dynorphin peptides (1–17 and 1–8) in the lumbar spinal cord. Levels of trypsin-generated arginine6-leucine-enkephalin (Leu-Enk-Arg)-immunoreactive determinants were also determined and used to reflect the content of dynorphin precursor intermediates. In spinal tissue, the amount of dynorphin A (1–17) contained in the form of precursor is, at a minimum, 10-fold higher than the content of mature dynorphin A (1–17) or dynorphin (1–8). During gestational day 22, the content of dynorphin precursor is reduced significantly (∼50%). The decline in the magnitude of dynorphin precursor intermediates in the spinal cord of pregnant rats vastly exceeds the magnitude of increase in the content of dynorphin peptides (1–17 and 1–8). This difference can best be explained by postulating a corresponding increase in the rate of release of spinal cord dynorphin (1–17). It is suggested that enhanced processing of dynorphin precursor intermediates represents the initial biochemical level of adaptation of spinal dynorphin neurons to increased demands of pregnancy.  相似文献   

20.
He SQ  Zhang ZN  Guan JS  Liu HR  Zhao B  Wang HB  Li Q  Yang H  Luo J  Li ZY  Wang Q  Lu YJ  Bao L  Zhang X 《Neuron》2011,69(1):120-131
δ-opioid receptors (DORs) form heteromers with μ-opioid receptors (MORs) and negatively regulate MOR-mediated spinal analgesia. However, the underlying mechanism remains largely unclear. The present study shows that the activity of MORs can be enhanced by preventing MORs from DOR-mediated codegradation. Treatment with DOR-specific agonists led to endocytosis of both DORs and MORs. These receptors were further processed for ubiquitination and lysosomal degradation, resulting in a reduction of surface MORs. Such effects were attenuated by treatment with an interfering peptide containing the first transmembrane domain of MOR?(MOR(TM1)), which interacted with DORs and disrupted the MOR/DOR interaction. Furthermore, the systemically applied fusion protein consisting of MOR(TM1) and TAT at the C terminus could disrupt the MOR/DOR interaction in the mouse spinal cord, enhance the morphine analgesia, and reduce the antinociceptive tolerance to morphine. Thus, dissociation of MORs from DORs in the cell membrane is?a potential strategy to improve opioid analgesic therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号