首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Shortening the five-carbon carboxylic acid side chain of cholic acid by one methylene group gave rise to a bile acid (norcholate) that was not a substrate for the bile acid-conjugating enzymes. The metabolism and biliary secretion of norcholate in intact liver was examined in the isolated perfused rat liver system. When rat livers were perfused with 14-20 microM solutions of norcholate for 10 min, norcholate was found in the unconjugated form in liver, venous effluent and bile. Neither tauronorcholate nor glyconorcholate was detectable by high-pressure liquid chromatography or fast-atom-bombardment mass spectrometry. The kinetics of hepatic uptake and biliary secretion of norcholate was compared with that for cholate, taurocholate and chemically synthesized tauronorcholate. The latter three bile acids were completely cleared from the perfusate and efficiently secreted into the bile. However, norcholate was incompletely extracted from the perfusate, and this was shown to be at least partially due to its relatively lower rate of hepatic uptake. Furthermore, the rate of norcholate secretion into bile was greatly reduced relative to the secretion of cholate or chemically synthesized tauronorcholate, even though the concentration of norcholate in the liver was comparatively high. These data demonstrate that the conjugation of bile acids greatly facilitates their secretion into bile.  相似文献   

2.
The role of the liver in metabolism of heparin was studied using the isolated rat liver perfused in vitro for 10 hr. Porcine intestinal heparin (1000 u) was added to the recirculating liver perfusate, and serial heparin measurements were performed on the liver perfusate every 2 hr, as well as on bile samples secreted by the perfused liver. Heparin concentration remained at a constant level throughout the 10 hr of perfusion, and there was no detectable heparin secreted into bile samples. The findings suggest that hepatic metabolism/clearance plays a minimal role in heparin kinetics in plasma.  相似文献   

3.
To determine the influence of prostaglandins on cAMP metabolism in renal papillary collecting tubule (RPCT) cells, intracellular cAMP levels were measured after incubating cells with prostaglandins (PGs) alone or in combination with arginine vasopressin (AVP). PGE1, PGE2 and PGI2, but not PGD2 or PGF2 alpha, increased intracellular cAMP concentrations. At maximal concentrations (10(-5) M) the effects of PGE2 plus PGI2 (or PGE1), but not of PGI2 plus PGE1, were additive suggesting that at least two different PG receptors may be present in RPCT cell populations. Bradykinin treatment of RPCT cells caused an accumulation of intracellular cAMP which was blocked by aspirin and was quantitatively similar to that observed with 10(-5) M PGE2. PGs, when tested at concentrations (e.g. 10(-9) M) which had no independent effect on intracellular cAMP levels, did not inhibit the AVP-induced accumulation of intracellular cAMP in RPCT cells. These results indicate that PGs do not block AVP-induced accumulation of intracellular cAMP in RPCT cells at concentrations of PGs which have been shown to inhibit the hydroosmotic effect of AVP on perfused collecting tubule segments. However, at higher concentrations of PGs (e.g. 10(-5) M), the effects of AVP plus PGE1, PGE2, PGI2 or bradykinin on intracellular cAMP levels were not additive. Thus, under certain conditions, there is an interaction between PGs and AVP at the level of cAMP metabolism in RPCT cells.  相似文献   

4.
Mutagenic effect of styrene and styrene-7,8-oxide was studied with the isolated perfused rat liver as metabolizing system and Chinese hamster V79 cells as genetic target cells. Styrene-7,8-oxide which is mutagenic per se was rapidly metabolized by the perfused rat liver. Thus no mutagenic effect was detected neither in the perfusion medium nor in the bile. However when styrene was added to the perfusion system, an increase in V79 mutants was observed regardless of where in the circulating perfusion medium the V79 cells were placed: the same effect was obtained with V79 cells close to the liver as well as at a distance from the liver. No mutagenic effect was observed in the bile. Simultaneous analysis of the styrene-7,8-oxide concentration in the perfusion medium, suggest that this metabolite is not the cause of the mutagenic effect observed during perfusion with styrene.The effect of the two test compounds on some liver functions was also studied. Both styrene and styrene-7,8-oxide changed the bile flow without affecting bile acid secretion: styrene caused a reduction in bile flow as compared to control perfusions and styrene-7,8-oxide increased the bile flow. Styrene, but not styrene-7,8-oxide, reduced gluconeogenesis from lactate. Styrene had no effect on the liver's capacity to incorporate amino acids into plasma proteins, whereas styrene-7,8-oxide reduced the amino acid incorporation. The microsomal cytochrome P-450 content was not affected by the two test compounds. No alteration in microsomal N- and C-oxygenation of N, N-dimethylaniline (DMA) was observed with styrene-7,8-oxide or the lower styrene dose used (240 μmol), whereas the higher styrene concentration (480 μmol) reduced N-oxygenation and thus also the total DMA metabolism.It is suggested that the results on styrene and styrene-7,8-oxide found here using the liver perfusion/cell culture system mimic the metabolism expected to be found in the intact animal, thus indicating that styrene-7,8-oxide is not the principal mutagenic metabolite of styrene in vivo.  相似文献   

5.
It has been reported that the adjuvant-induced inflammation could affect drug metabolism in liver. Here we further investigated the effect of inflammation on drug transport in liver using taurocholate as a model drug. The hepatic disposition kinetics of [(3)H]taurocholate in perfused normal and adjuvant-treated rat livers were investigated by the multiple indicator dilution technique and data were analyzed by a previously reported hepatobiliary taurocholate transport model. Real-time RT-PCR was also performed to determine the mRNA expression of liver bile salt transporters in normal and diseased livers. The uptake and biliary excretion of taurocholate were impaired in the adjuvant-treated rats as shown by decreased influx rate constant k(in) (0.65 ± 0.09 vs. 2.12 ± 0.30) and elimination rate constant k(be) (0.09 ± 0.02 vs. 0.17 ± 0.04) compared with control rat group, whereas the efflux rate constant k(out) was greatly increased (0.07 ± 0.02 vs. 0.02 ± 0.01). The changes of mRNA expression of liver bile salt transporters were found in adjuvant-treated rats. Hepatic taurocholate extraction ratio in adjuvant-treated rats (0.86 ± 0.05, n = 6) was significantly reduced compared with 0.93 ± 0.05 (n = 6) in normal rats. Hepatic extraction was well correlated with altered hepatic ATP content (r(2) = 0.90). In conclusion, systemic inflammation greatly affects hepatic ATP content/production and associated transporter activities and causes an impairment of transporter-mediated solute trafficking and pharmacokinetics.  相似文献   

6.
The purpose of this study was to determine whether diosgenin suppresses cholesterol absorption in rats, and to examine relevant changes in cholesterol and bile acid metabolism. Diosgenin fed with the diet for 1 week inhibited cholesterol absorption as determined by the serum isotope ratio technique, as well as by measuring in the feces the amount of unabsorbed radioactivity from orally administered [3H]cholesterol. In addition, diosgenin suppressed the serum and liver uptake of radioactivity from co-administered [3H]cholesterol as well as the accumulation of liver cholesterol in the cholesterol-fed rat; diosgenin was substantially more active than cholestyramine or beta-sitosterol. In vitro, diosgenin had no effect on the activity of rat pancreatic esterase. Diosgenin decreased the elevated cholesterol in serum LDL and elevated cholesterol in the HDL fraction of cholesterol-fed rats; diosgenin had no effect on serum cholesterol in normocholesterolemic rats. In contrast to cholestyramine, diosgenin markedly increased neutral sterol excretion without altering bile acid excretion; in vitro, diosgenin had no effect on bile acid binding. Diosgenin treatment increased hepatic and intestinal cholesterol synthesis as well as the activity of hepatic HMG CoA reductase. This was accompanied by increased biliary concentration of cholesterol, but not of bile acids. Diosgenin had no effect on cholesterol synthesis when added to normal rat liver homogenates. It was concluded that diosgenin interferes with the absorption of cholesterol of both exogenous and endogenous origin; such interference is accompanied by derepressed, i.e., increased, rates of hepatic and intestinal cholesterol synthesis. The increased unabsorbed cholesterol together with enhanced secretion of cholesterol into bile resulted in increased excretion of neutral sterols without affecting the biliary and fecal excretion of bile acids.  相似文献   

7.
Prostaglandins (PGs) are known to have effects on hepatic glucose metabolism. Some actions of PGs in intact liver systems may not involve PG effects directly at the level of the hepatocyte. To define the ability of structurally distinct prostaglandins to affect hepatocyte metabolism directly, the regulation of glycogenolysis was studied in hepatocytes isolated from male Sprague-Dawley rats. PGF and PGB2 inhibited glucagon-stimulated glycogenolysis in the hepatocyte system. Pinane thromboxane A2 (PTA2) and PGD2 had no effect on glucagon-stimulated glycogenolysis. Consistent with their inhibition of glucagon-stimulated glycogenolysis, PGF2 and PGF2 alpha inhibited glucagon-stimulated hepatocyte cyclic AMP accumulation. These actions of PGB2 and PGF2 alpha are identical with those previously reported for PGE2. Additionally, PGE2, PGF2 alpha and PGB2 inhibited glucagon-stimulated adenylate cyclase activity in purified hepatic plasma membranes. In contrast, PGF2 alpha, PGD2 and PTA2 were all without affect on basal rates of hepatocyte glycogenolysis or hepatocyte cyclic AMP content. PGE2 also inhibited glycogenolysis stimulated by the alpha-adrenergic agonist phenylephrine. Exogenous arachidonic acid was not able to reproduce the affects of PGE2 or PGF2 alpha on hepatocyte glycogenolysis, consistent with an extra-hepatocyte source of the prostaglandins in the intact liver. Thus PGE2 and PGF2 alpha act specifically to inhibit glucagon-stimulated adenylate cyclase activity. No prostaglandin tested was found to stimulate glycogenolysis. PGE2 and PGF2 alpha may represent intra-hepatic modulators of hepatocyte glucose metabolism.  相似文献   

8.
The hepatic and biliary metabolites of PGE1 have been isolated and identified after infusions of PGE1 into isolated rat liver preparations. The results demonstrate that in general PGE1 undergoes metabolism similar to that of PGE2 in the rat and reveals the possibility of a selective PG metabolite transport system across the biliary canalicular membrane.  相似文献   

9.
Kinetics of sulfation in the rat in vivo and in the perfused rat liver   总被引:1,自引:0,他引:1  
Sulfation of phenols and similar low-molecular-weight substrates in the rat in vivo is a rather complex process. Besides enzyme kinetic parameters, cosubstrate availability (indirectly measured by serum sulfate concentration) and competition with glucuronidation also play a role. For some substrates extensive extrahepatic sulfation occurs, accounting for more than 50% of the total-body sulfation capacity. However, the hepatic contribution may be under-estimated when drugs are administered into the hepatic portal vein, because saturation of hepatic metabolism may occur under those conditions. Inside the liver, sulfation is located primarily in zone 1, the periportal area. This can be shown in the single-pass perfused rat liver by perfusion in either the normal or retrograde flow direction. In the rat sulfate conjugates are eliminated preferentially in urine, whereas glucuronides are excreted to a high extent in bile. Therefore, it is important to collect both bile and urine in the characterization of pharmacokinetics of conjugation in vivo. Selective inhibition of sulfation by pentachlorophenol and 2,6-dichloro-4-nitrophenol facilitates studies of the role of sulfation in elimination of its substrates, and the competition between sulfation and glucuronidation for the same substrate.  相似文献   

10.
The mode of action of hepatic nerves on the metabolism of carbohydrates was studied in the rat liver perfused in situ. 1. Electrical stimulation of the nerve bundles around the hepatic artery and the portal vein resulted in an increase of glucose and lactate output, an enhancement of phosphorylase a activity and a decrease of portal flow. 2. Sodium nitroprusside prevented the hemodynamic changes after nerve stimulation without affecting the metabolic alterations. 3. Phentolamine or an extracellular calcium level below 300 mumol x 1(-1) abolished both hemodynamic and metabolic changes after nerve stimulation, while propranolol or atropine were without effect. 4. Norepinephrine infusion mimicked nerve stimulation only at the highly unphysiological concentration of 0.1 microM; it was not effective at a concentration of 0.01 microM, which might be reached in the sinusoidal blood due to an overflow from intrahepatic synapses. The present results suggest that, in rat liver, glycogen breakdown is regulated by alpha-sympathetic nerves directly rather than indirectly via hemodynamic changes or via norepinephrine overflow.  相似文献   

11.
The beta-adrenergic agonist isoproterenol inhibited the glycogenolytic response of platelet-activating factor (AGEPC, 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine) in perfused livers derived from fed rats. AGEPC-stimulated hepatic vasoconstriction, measured by increases in portal vein pressure, also was inhibited by prior isoproterenol infusion. Isoproterenol-mediated inhibition of these hepatic responses to AGEPC was not apparent when isoproterenol (10 microM) was coinfused with the beta-receptor antagonist propranolol (75 microM) or when isoproterenol was replaced with the alpha-adrenergic agonist phenylephrine (10 microM). alpha-Agonist-induced glycogenolysis and vasoconstriction in the perfused liver was unaffected by isoproterenol infusion. Glucagon (2.3 nM) had no effect on the glycogenolytic or vasoconstrictive responses of the liver to AGEPC despite the fact that glucagon increased hepatic cAMP levels to a far greater extent than isoproterenol. Additionally, inhibition of the hepatic responses to AGEPC by isoproterenol occurred in perfused livers from mature rats (i.e. greater than 300 g) in which liver parenchymal cells lack functional beta-adrenergic receptors. The data presented in this study illustrate a specific inhibition of AGEPC-induced hepatic glycogenolysis and vasoconstriction by beta-adrenergic stimulation of the perfused liver. This inhibition appears to be mediated by interaction of isoproterenol with nonparenchymal cells within the liver. These findings are consistent with the concept that AGEPC stimulates hepatic glycogenolysis by an indirect mechanism involving hepatic vasoconstriction.  相似文献   

12.
To explore the possible role of gap junctions in neural regulation of hepatic glucose metabolism, the effects of hepatic nerve stimulation on metabolic and hemodynamic changes were examined in normal and regenerating rat liver which was perfused in situ at constant pressure via the portal vein with a medium containing 5 mM glucose, 2 mM lactate and 0.2 mM pyruvate. 1. The content of connexin 32, a major component of gap junctions in rat liver, decreased transiently to about 25% of the control level in regenerating liver 48-72 h after partial hepatectomy and recovered to normal by the 11th day after the operation. 2. In normal liver, electrical stimulation of the hepatic nerves (10 Hz, 20 V, 2 ms) and infusion of noradrenaline (1 microM) both increased glucose and lactate output and reduced perfusion flow. 3. In early stage of regenerating liver 48 h and 72 h after partial hepatectomy, the increase in glucose output in response to nerve stimulation was almost completely inhibited, whereas the change in lactate balance was partially suppressed and the reduction of flow rate was retained. The response of glucose output to nerve stimulation recovered by the 11th day after partial hepatectomy. In contrast, exogenous application of noradrenaline increased glucose output even in the early stage of regenerating liver. 4. The increase in noradrenaline overflow during hepatic nerve stimulation in the early stage of regenerating liver was approximately the same as in normal liver. Liver glycogen was sufficiently preserved in the early stage of regenerating liver. However, noradrenaline infusion could no more increase glucose output both in normal and in regenerating livers after 24 h of fasting that depleted liver glycogen. These results suggest that the impaired effects of sympathetic nerve stimulation on glucose metabolism observed in regenerating liver are derived neither from reduced release of noradrenaline nor from depletion of liver glycogen, but rather from transient reduction of gap junctions which assist signal propagation of the nerve action through intercellular communication in rat liver.  相似文献   

13.
We have previously shown that plasma membranes from adrenal medulla possess specific high-affinity binding sites for prostaglandins (PGs) E1 and E2. We have now investigated the binding of PGE2 to intact bovine adrenal chromaffin cells and the effects of prostaglandins on the release of catecholamines from these cells. Adrenal chromaffin cells specifically bound PGE2 with a dissociation constant of 2 nM and a concentration of about 40,000 binding sites per cell. Low concentrations of PGE2 inhibited the nicotine-stimulated release of catecholamines from these cells. The effect of PGE2 was biphasic, the maximal inhibitory effect being observed at a concentration of between 1 and 10 nM. Higher concentrations (1 microM) of PGE2 had minimal inhibitory effects on nicotine-evoked noradrenaline release, but instead had a direct stimulatory effect in the absence of cholinergic agonists. Although the stimulatory effects of high concentrations of PGE2 were reproducibly observed in all cell preparations, only about one-half of the cultures tested responded to the inhibitory effects of this prostaglandin. It is possible that PGE2 plays a modulatory role in the regulation of catecholamine secretion from the adrenal medulla.  相似文献   

14.
Incubation of prostaglandin E1 (PGE1) with liver microsomes from control rabbits and from rabbits treated with ethanol or imidazole yielded 18-, 19-, and 20-hydroxy metabolites, representing hydroxylation at omega-2, omega-1, and omega carbons, respectively. The current investigation demonstrates that rabbit liver P-450 isozyme 6 effectively catalyzes the omega-1 and omega-2 hydroxylation of PGE1 and PGE2. Additionally, a small amount of product with chromatographic characteristics of the corresponding 20-hydroxy metabolite has been detected. The incorporation of cytochrome b5 into the reconstituted system did not enhance the rate of PGE1 hydroxylation and had no effect on the ratio of products formed. The Km value for the omega-1 and omega-2 hydroxylation of PGE1 with P-450 isozyme 6 from imidazole-treated rabbits was approximately 140 microM; the Vmax's (nmol product min-1 nmol P-450-1) were 2.1 and 1.1 for the omega-1 and omega-2 hydroxylations, respectively. These rates represent the highest activities by hepatic P-450 isozymes for hydroxylation of PGs, and suggest that isozyme 6 is responsible for the omega-2 hydroxylation of PGEs observed in rabbit liver microsomes.  相似文献   

15.
Leukotriene B4 metabolism by hepatic cytochrome P-450   总被引:2,自引:0,他引:2  
Leukotriene B4 (LTB) was found to be metabolized by suspensions of rat liver microsomes in the presence of NADPH and oxygen. The rate of LTB metabolism was also measured in reconstituted systems of both micelles and phospholipid vesicles containing cytochrome P-450-LM2, NADPH cytochrome P-450 reductase, and cytochrome b5. A 1 microM concentration of LTB was metabolized by rat hepatic microsomes at a rate of 4 pmol LTB/min/nmole P-450, and by vesicle and micelle reconstituted systems at 3 pmole/min/nmole P-450-LM2. At this rate a 10 g rat liver exposed to 1 microM LTB can metabolize 30 micrograms per hour. In that the leukotrienes are pharmacologically active at nanomolar concentrations, hepatic metabolism may be an important pathway of leukotriene inactivation.  相似文献   

16.
The present study has demonstrated that tauroursodeoxycholate (TUDC), but not taurocholate, can reverse chlorpromazine (CPZ)-induced cholestasis in the isolated perfused rat liver. At an infusion rate of 1.5 mumol/min, TUDC led to restoration of bile flow in the perfused rat liver made cholestatic by the addition of 250 microM CPZ. This reversal was accompanied by an increased excretion of CPZ and its metabolites. A higher infusion rate of 5.0 mumols TUDC/min, however, led to only a transient increase in bile flow and to no increase in CPZ excretion. In contrast to the effects of TUDC, infusion of taurocholate led to an exacerbation of CPZ-induced cholestasis. The differences in the efficacy of the two bile salts may be due to their relative detergent (hydrophobic) properties.  相似文献   

17.
Several Ca2+-mobilizing agents were tested for their potential to elicit the net release of prostaglandins from the isolated perfused rat liver. Among these ATP and UTP only led to an efficient stimulation of PGD2 and PGE2 synthesis. 20 microM ATP or 20 microM UTP increased the release of PGD2 8-fold and that of PGE2 2 to 3-fold. In total, at least 40 times more PGD2 than PGE2 left the liver after stimulation. The time course of prostaglandin release was similar for both nucleotides. Vasopressin had almost no effect on the release of both prostaglandins and on portal vein pressure. But phenylephrine and nerve stimulation while raising the PGD2 efflux only slightly caused an elevation of PGE2 outflow and portal pressure.  相似文献   

18.
The possibility that endotoxin pretreatment could prevent the hepatotoxic effects of erythromycin estolate (EE) was investigated using the isolated perfused rat liver. The addition of E. coli endotoxin (25 micrograms/ml) to the perfusate, 30 min prior to EE administration at 150 or 200 microM, significantly ameliorated the decreases in bile and perfusate flow caused by either concentrations of the drug in control liver preparations. This phenomenon was also studied using liver isolated from rats pretreated in vivo with endotoxin for three days. In these preparations, EE at both concentrations did not alter bile flow and caused reductions of perfusate flow which were far less than those observed in untreated control livers. Furthermore, in livers from endotoxin-treated rats EE induced less reduction of bile acid excretion and, at 150 microM, it did not increase the bile to perfusate ratio of sucrose seen in control preparations after the drug, which may be an expression of altered hepatocytic membrane permeability. Since it is known that both endotoxin and EE interact with membranes, it is suggested that the "protective" effects of endotoxin may occur at the membrane level.  相似文献   

19.
3H-Labeled leukotriene C3 was efficiently taken up by the isolated, perfused rat liver and excreted into the bile. The isolated, perfused kidney eliminated leukotriene C3 from the perfusate slower and excreted only a fraction of the radioactivity into the urine. Isolated hepatic, intestinal and renal cells also took up leukotriene C3, the renal cells being the most effective in accumulating the label. Anthglutin, an inhibitor of γ-glutamyl transferase, decreased the uptake by kidney cells but had no effect on the uptake by the other cell types. In liver cells, the uptake rate was sensitive to temperature and to cellular ATP content. Chromatographic analyses indicated that renal cells metabolized leukotriene C3 more rapidly than hepatic and intestinal cells. Leukotriene D3 and E3 were formed during the incubations with kidney cells, whereas intestinal cells produced mainly more polar metabolites.  相似文献   

20.
The regulation of PGE2 (prostaglandin E2) and PGI2 (prostaglandin I2; prostacyclin) formation was investigated in isolated adipocytes. The formation of both PGs was stimulated by various lipolytic agents such as isoproterenol, adrenaline and dibutyryl cyclic AMP. During maximal stimulation the production of PGE2 and PGI2 (measured as 6-oxo-PGF1 alpha) was 0.51 +/- 0.04 and 1.21 +/- 0.09 ng/2 h per 10(6) cells respectively. Thus PGI2 was produced in excess of PGE2 in rat adipocytes. The production of the PGs was inhibited by indomethacin and acetylsalicylic acid in a concentration-dependent manner. The half-maximal effective concentration of indomethacin was 328 +/- 38 nM and that of acetylsalicylic acid was 38.5 +/- 5.3 microM. The PGs were maximally inhibited by 70-75% after incubation for 2 h. In contrast with their effect on PG production, the two agents had a small potentiating effect on the stimulated lipolysis (P less than 0.05). The phospholipase inhibitors mepacrine and chloroquine inhibited both PG production and triacylglycerol lipolysis and were therefore unable to indicate whether the PG precursor, arachidonic acid, originates from phospholipids or triacylglycerols in adipocytes. Angiotensin II significantly (P less than 0.05) stimulated both PGE2 and PGI2 production in rat adipocytes without affecting triacylglycerol lipolysis. Finally, it was shown that PGE2 and PGI2 were also produced in human adipocytes, although in smaller quantities than in rat adipocytes. It is concluded that the production of PGs in isolated adipocytes is regulated by various hormones. Moreover, at least two separate mechanisms for PG production may exist in adipocytes: (1) a mechanism that is activated concomitantly with triacylglycerol lipolysis (and cyclic AMP) and (2) an angiotensin II-sensitive, but lipolysis (and cyclic AMP)-independent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号