首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was meant to analyze the neural control of the branchial muscles of the clam Mercenaria mercenaria. Gills isolated from the animal contract in response to 5-hydroxytryptamine (5HT), dopamine (DA), and acetylcholine (ACh); but the ACh contraction occurred only if the gills had been pretreated with the cholinesterase inhibitor eserine. The 5HT antagonists cyproheptadine and mianserin blocked the contractile effects of all of the agonists. However, gills exposed to the 5HT antagonists and eserine relaxed in response to ACh. The DA antagonist SCH-83566 inhibited the effects of DA, but had no effect on contractions induced by 5HT and ACh. The ACh antagonist hexamethonium inhibited both the excitatory and inhibitory effects of ACh, but had no effect on contractions induced by 5HT and DA. 5HT and DA in gill tissue were visualized by using immunohistochemistry. Within each gill filament are dorsoventral neurons running adjacent to the epithelium and containing immunoreactive 5HT and DA. A complex network of 5HT-positive fibers is associated with the septa, blood vessels, and muscles, whereas DA-positive fibers are restricted to the septa. We propose that 5HT is the excitatory transmitter to the gill muscles, and that DA and ACh exert their excitatory effects by stimulating 5HT motor nerves. ACh may also be an inhibitory transmitter of the muscles.  相似文献   

2.
目的:研究乙酰胆碱(ACh)受体在皮质酮(CORT)对大鼠头端延髓腹外侧区(RVLM)前交感神经元快速效应中的作用,探讨糖皮质激素在交感心血管活动调节中的非基因组机制。方法:本研究采用细胞外记录和微电泳等方法观察CORT对氨基甲酸乙酯麻醉大鼠RVLM前交感神经元的作用,观察分别给予ACh受体拮抗剂阿托品(ATR)、筒箭毒(d-TC)或六烃季铵(C6)后CORT对RVLM前交感神经元的影响。结果:在RVLM共记录到33个前交感神经元,CORT能导致25(76%)个前交感神经元快速兴奋,且具有剂量依赖性,余8个前交感神经元没有反应;其中被CORT兴奋的10个单位微电泳ART后神经元的放电明显下降,但对CORT导致的兴奋作用没有明显的影响。分别向7和6个被CORT兴奋的前交感神经元微电泳d-TC和C6后,单位放电没有变化,同时对CORT导致的兴奋作用无影响。结论:CORT对RVLM前交感神经元具有快速的兴奋作用,这种作用可能并不通过ACh受体介导。  相似文献   

3.
Excitatory and inhibitory responses of sympathetic discharge were recorded in single renal postganglionic neurons of rabbits anaesthetized with urethane and chloralose. The animals were vagotomized and had transected aortic nerves. Responses were elicited by single volleys in the aortic C-fibres. Excitatory responses consisted in short-lasting increase in the rate of ongoing sympathetic discharge and were followed by inhibitory responses. Excitatory effects together with inhibitory responses were seen in 68% of units (19/28). Only excitatory effects appeared in 2 neurons (7.1%) and only inhibitory effects in 7 neurons (25%). In renal neurons exhibiting both effects, the excitatory responses appeared after latency of 172 +/- 8 ms (x +/- S.D.) and had duration of 64 +/- 11 ms. Inhibitory effects had latency o f 257 +/- 10 ms and their duration amounted to 265 +/- 22 ms. In more than half of recordings the excitatory responses were separated from the inhibitory effects by discharge lasting 33 +/- 4 ms. Significant correlations between latencies of excitatory and inhibitory responses and between duration of excitatory and latency of inhibitory responses suggest interaction between both effects. Increase in the number of afferent volleys (1 through 5) evoked relatively small changes in duration of the excitatory effect indicating that temporal facilitation is of minor importance in generating this response. Temporal facilitation was found to play an important role in determining duration of the inhibitory response. Comparison of effects of unilateral and bilateral stimulation of the aortic C-fibres showed larger occlusion of durations of the excitatory than inhibitory responses.  相似文献   

4.
  1. GABA, ACh, and other agents were applied by pressure ejection to the neuropil of the third abdominal ganglion in the isolated nerve cord of Manduca sexta. Intersegmental muscle motor neurons with dendritic arborizations in the same hemiganglion were inhibited by GABA (Fig. 2) and excited by ACh (Fig. 5).
  2. Picrotoxin was a potent antagonist of GABA (Fig. 4A). Bicuculline reduced GABA responses in some motor neurons (Fig. 4C), but had no effect on many other motor neurons. Curare reduced ACh responses (Fig. 6A). Bicuculline was an effective ACh antagonist in most motor neurons tested (Fig. 6B).
  3. Motor neurons with dendrites across the ganglion from the ejection pipette exhibited different responses to GABA and ACh. Contralateral motor neurons often showed smaller, delayed hyperpolarizing GABA responses (Fig. 7). On two occasions, contralateral motor neurons had excitatory responses (Fig. 8). Contralateral motor neurons were hyperpolarized by ACh (Fig. 9). The inhibitory responses had only slightly longer latencies than ipsilateral excitatory ACh responses (Fig. 10A). The contralateral inhibitory ACh responses, but not the ipsilateral excitatory ACh responses, were eliminated by TTX (Fig. 10B).
  4. A model, which includes inhibitory interneurons that cross the ganglionic midline to inhibit their contralateral homologs and motor neurons (Fig. 11), is proposed to account for contralateral responses to GABA and ACh and antagonistic patterns of activity of motor neurons during mechanosensory reflex responses.
  相似文献   

5.
1. The effect of acetylcholine (ACh) on the response properties of single units in the caudal auditory telencephalon was studied both in awake chickens and in an in vitro slice preparation. 2. Two types of electrophysiological behavior in response to ACh were observed: an inhibition of cell firing typical for the majority of neurons in the auditory hyperstriatum ventrale and a facilitation of neuronal responses seen predominantly in neostriatal auditory units. 3. The facilitatory effect of ACh is also present in hyperstriatal cells, but is usually dominated by an indirect inhibition. 4. ACh-induced facilitation on single unit responses could be mimicked in awake birds by applying potentially arousing sensory stimuli. 5. The effects of ACh are antagonized by the muscarinic receptor blocker scopolamine. 6. Inhibitory responses can also be antagonized by the GABA-antagonist bicuculline and thus can be attributed to an ACh-induced activation of GABAergic inhibitory interneurons. Evidence is given that the facilitatory responses result from a closure of voltage-dependent potassium channels. 7. The results are discussed with respect to a possible role of cholinergic afferents in telencephalic processing of auditory information and in comparison with the cholinergic influences in the mammalian neocortex.  相似文献   

6.
Calcium entry induced by acetylcholine action on snail neurons   总被引:1,自引:0,他引:1  
A study was made of excitatory and inhibitory responses elicited by acetylcholine (ACh) in neurons of the snail Eobania vermiculata. At resting potential, ACh evoked a depolarizing inward current in some neurons (D-cells) and a hyperpolarizing current in others (H-cells). The currents elicited by ACh were nonlinearly dependent on membrane potential. After either D- or H-cells were equilibrated in chloride-free isotonic calcium, ACh evoked a depolarizing inward current which reversed sign at about -55 mV. These results suggest that ACh causes an influx of Ca2+ in both types of neurons.  相似文献   

7.
The effects induced on neuronal firing by microiontophoretic application of the biological amines noradrenaline (NA) and 5-hydroxytryptamine (5-HT) were studied "in vivo" in ventral-anterior (VA) and ventrolateral (VL) thalamic motor nuclei of anaesthetized rats. In both nuclei the amines had a mostly depressive action on neuronal firing rate, the percentage of units responsive to NA application (88%) being higher than to 5-HT (72%). Short-lasting (less than 2 min) and long lasting (up to 20 min) inhibitory responses were recorded, the former mostly evoked by NA and the latter by 5-HT ejection. In some cases 5-HT application had no effect on the firing rate but modified the firing pattern. NA-evoked responses were significantly more intense in VL than in VA neurons. Short-lasting inhibitory responses similar to NA-induced effects were evoked by the alpha2 adrenergic receptor agonist clonidine and to a lesser extent by the beta adrenergic receptor agonist isoproterenol. Inhibitory responses to 5-HT were partially mimicked by application of the 5-HT(1A) receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT) and of the 5-HT2 receptor agonist alpha-methyl-5-hydroxytryptamine (ALPHA-MET-5-HT). The latter evoked excitatory responses in some cases. Both 5-HT agonists were more effective on VA than on VL neurons. The effects evoked by agonists were at least partially blocked by respective antagonists. These results suggest that although both 5-HT and NA depress neuronal firing rate, their effects differ in time course and in the amount of inhibition; besides aminergic modulation is differently exerted on VA and VL.  相似文献   

8.
Effects of dopamine on the background spike activity of functionally (according to their electrophysiological characteristics) identified dopaminergic (DA) or non-dopaminergic (non-DA) neurons of the compact zone of thesubstantia nigra were studied on slices of the midbrain of adult rats. In the majority of DA neurons, dopamine suppressed the background activity in a dose-dependent manner. Sensitivity of these cells to dopamine varied within a wide range: IC50, the concentration providing the 50% maximum effect, equalled from 3 to 3,000 µM in different units. A part of DA neurons responded to dopamine with an increase in their activity. Mixed responses, in which an initial suppression of impulsation was replaced by a slow-developing activation, was observed in some neurons. Non-DA neurons usually responded to dopamine by an enhancement of impulsation; yet, the cells with inhibitory or mixed responses similar to those of DA neurons could be found in this population as well. Sensitivity of non-DA neurons to dopamine was about the same as that of DA-cells, without the dependence on the direction of responses. S(–)-suipiride, a blocker of D2 receptors, decreased the inhibitory component of all tested responses to dopamine both in DA and non-DA neurons and evoked no changes in the excitatory component. At the same time, R(+)-SCH 23390 HC1, a blocker of D1 receptors, suppressed the activatory component of responses with no effect on the inhibitory component. We conclude that both types of DA receptors, D2 and D1 receptors, can be present on the DA and non-DA neurons. Dopamine, influencing these receptors, suppresses or facilitates, respectively, the spike activity of these cells. The relative amount of such receptors is the main factor determining the pattern and dynamics of the integral response to dopamine application. The possible functional role of the presence of both D1 and D2 receptors on the membrane of a single neuron is discussed.Neirofiziologiya/Neurophysiology, Vol. 27, No. 4, pp. 268–277, July–August, 1995.  相似文献   

9.
All the identified feeding motoneurons of Lymnaea respond to bath or iontophoretically applied acetylcholine (ACh). Three kinds of receptors (one excitatory, one fast inhibitory and one slow inhibitory) were distinguished pharmacologically. The agonist TMA (tetramethylammonium) activates all three receptors, being weakest at the slow inhibitory receptor. PTMA (phenyltrimethylammonium) is less potent than TMA and is ineffective at the slow inhibitory receptor, which is the only receptor sensitive to arecoline. At 0.5 mM the antagonists HMT (hexamethonium) and ATR (atropine) selectively block the excitatory response, while PTMA reduces the response to ACh at all three receptors. d-TC (curare) antagonizes only the fast excitatory and the fast inhibitory responses, but MeXCh (methylxylocholine) blocks the fast excitatory and slow inhibitory responses solely. For each of the feeding motoneurons, the sign of the cholinergic response (excitation or inhibition) is the same as the synaptic input received in the N1 phase of the feeding rhythm.  相似文献   

10.
1. Neurons in the antennal lobe (AL) of the moth Manduca sexta respond to the application, via pressure injection into the neuropil, of acetylcholine (ACh). When synaptic transmission is not blocked, both excitatory (Fig. 2) and inhibitory (Fig. 3) responses are seen. 2. Responses to ACh appear to be receptor-mediated, as they are associated with an increase in input conductance (Figs. 2B and 3B) and are dose-dependent (Fig. 2 C). 3. All neurons responsive to ACh are also excited by nicotine. Responses to nicotine are stronger and more prolonged than responses to ACh (Fig. 4C). No responses are observed to the muscarinic agonist, oxotremorine (Fig. 4 B). 4. Curare blocks responses of AL neurons to applied ACh, while atropine and dexetimide are only weakly effective at reducing ACh responses (Figs. 5 and 6). 5. Curare is also more effective than atropine or dexetimide at reducing synaptically-mediated responses of AL neurons (Fig. 7). 6. In one AL neuron, bicuculline methiodide (BMI) blocked the IPSP produced by electrical stimulation of the antennal nerve, but it did not reduce the inhibitory response to application of ACh (Fig. 8).  相似文献   

11.
12.
The responses of the snail central neurons (Helix pomatia, Lymnaea stagnalis) and the isolated Helix heart were characterized evoked by cyanobacterial extracts (Cylindrospermopsis raciborskii ACT strains) isolated from Lake Balaton (Hungary). The nicotinergic acetylcholine (ACh) receptors in the CNS (both excitatory and inhibitory) were blocked by the extracts of ACT 9502 and ACT 9505 strains and the anatoxin- a (homoanatoxin-a) producing reference strain of Oscillatoria sp. (PCC 6506), similar to the inhibitory effects of the pure anatoxin-a. The enhancement of the ACh responses by the ACT 9504 extract suggests additional, probably acetylcholine esterase inhibitory mechanisms. On the isolated Helix heart the crude ACT 9505 and PCC 6506 extracts evoked frequency increase and transient twitch contraction, opposite to the ACh evoked heart relaxation. Anatoxin-a similarly contracted the heart but did not increase its contration frequency. These data suggest the involvement of some non-cholinergic mechanisms, acting very likely by direct modulation of the electrical or contractile system of the isolated heart. Diversity of the effects evoked by the cyanobacterial extracts in the CNS and heart suggest pharmacologically different neuroactive components among the secondary metabolites of the cyanobacteria acting on both (anatoxin-a like) cholinergic and (unidentified) non-cholinergic receptors.  相似文献   

13.
Electrophysiological and biochemical studies suggest that VIP may exert a facilitating action in the neocortical local circuitry. In the present study, we examined the actions of VIP and VIP + norepinephrine (NE) on somatosensory cortical neuron responses to direct application of the putative transmitters acetylcholine (ACh) and gamma-aminobutyric acid (GABA). Spontaneous and transmitter-induced discharges of cortical neurons from halothane-anesthetized rats were monitored before, during and after VIP, NE and VIP + NE iontophoresis. In 57 VIP-sensitive cells tested, VIP application (5-70 nA) increased (n = 18), decreased (n = 36) or had biphasic actions (n = 3) on background firing rate. In a group of 20 neurons tested for NE + VIP, the combined effect of both peptide and bioamine was predominantly (70%) inhibitory. On the other hand, inhibitory and excitatory responses of cortical neurons to GABA (11 of 15 cases) and ACh (10 of 18 cases), respectively, were enhanced during VIP iontophoresis. Concomitant application of VIP and NE produced additive (n = 2) or more than additive (n = 3) enhancing effects on GABA inhibition. NE administration reversed or enhanced further VIP modulatory actions on ACh-induced excitation. These findings provide electrophysiological evidence that NE and VIP afferents may exert convergent influences on cortical neuronal responses to afferent synaptic inputs such that modulatory actions are anatomically focused within the cortex.  相似文献   

14.
In ananesthetized cats, neurons of the nucleus of the tractus solitarius (NTS) and the dorsal motor nucleus of the vagus nerve (DMNV) revealed phasic excitatory responses to separate single vagal and cortical stimuli. Stimulation of the anterior limbic cortex combined with vagal stimulation resulted in inhibitory or excitatory modification of the vagal induced responses of the NTS and DMNV neurons. The data obtained suggest that complete inhibitory effects are related to general cortical mechanisms of control of the functional state of the brain stem visceral neurons. Selective inhibition of the vagal induced responses by limbic cortex stimulation is due to particular cortical mechanisms of the visceral sensory transmission control via the NTS neurons.  相似文献   

15.
Dopamine (DA) causes a dose-dependent increase in the frequency of motor neuron bursts [virtual ventilation (fR)] produced by deafferented crab ventilatory pattern generators (CPGv). Domperidone, a D2-specific DA antagonist, by itself reversibly depresses fR and also blocks the stimulatory effects of DA. Serotonin (5HT) has no direct effects on this CPGv. Nicotine also causes dramatic dose-dependent increases in the frequency of motor bursts from the CPGv. The action is triphasic, beginning with an initial reversal of burst pattern typical of reversed-mode ventilation, followed by a 2- to 3-min period of depression and then a long period of elevated burst rate. Acetylcholine chloride (ACh) alone is ineffective, but in the presence of eserine is moderately stimulatory. The inhibitory effects of nicotine are only partially blocked by curare. The excitatory action of nicotine is blocked by prior perfusion of domperidone, but not by SKF-83566.HCl, a D1-specific DA antagonist. SKF-83566 had no effects on the ongoing pattern of firing. These observations support the hypothesis that dopaminergic pathways are involved in the maintenance of the CPGv rhythm and that the acceleratory effects of nicotine may involve release of DA either directly or via stimulation of atypical ACh receptors at intraganglionic sites.  相似文献   

16.
In vivo electrochemical techniques were used to study the effects of the sulfated (CCK8-S) and unsulfated (CCK8-US) forms of cholecystokinin octapeptide on apomorphine-induced inhibition of dopamine (DA) release in the nucleus accumbens of the anesthetized rat. A dose-dependent inhibition of DA release was observed with intravenous (i.v.) injections of apomorphine. CCK8-S administered i.v. at the nadir of the apomorphine-induced inhibition of DA release produced a transient and dose-dependent increase followed by a prolonged decrease in DA release CCK8-US was ineffective in altering apomorphine's inhibitory effects on DA release. The CCK receptor antagonist proglumide injected i.v. 10 min after apomorphine administration had no effect on apomorphine-induced inhibition of DA release, but blocked the effects of CCK8-S on this inhibition. Given that apomorphine may inhibit DA release by a direct hyperpolarizing action on DA neurons, the observation that CCK8-S temporarily reverses apomorphine-induced effects and further inhibits DA release suggests that CCK8-S exerts its inhibitory effects via a process of depolarization block in DA neurons. These findings indicate that apomorphine and CCK8-S may inhibit DA release in vivo by opposite effects on DA cell membrane potentials and suggest that endogenously released CCK may serve to modulate mesolimbic DA neurotransmission.  相似文献   

17.
The dorsal motor nucleus of the vagus (DMV) receives more noradrenergic terminals than any other medullary nucleus; few studies, however, have examined the effects of norepinephrine (NE) on DMV neurons. Using whole cell recordings in thin slices, we determined the effects of NE on identified gastric-projecting DMV neurons. Twenty-five percent of DMV neurons were unresponsive to NE, whereas the remaining 75% responded to NE with either an excitation (49%), an inhibition (26%), or an inhibition followed by an excitation (4%). Antrum/pylorus- and corpus-projecting neurons responded to NE with a similar percentage of excitatory (49 and 59%, respectively) and inhibitory (20% for both groups) responses. A lower percentage of excitatory (37%) and a higher percentage of inhibitory (36%) responses were, however, observed in fundus-projecting neurons. In all groups, pretreatment with prazosin or phenylephrine antagonized or mimicked the NE-induced excitation, respectively. Pretreatment with yohimbine or UK-14304 antagonized or mimicked the NE-induced inhibition, respectively. These data suggest that NE depolarization is mediated by alpha(1)-adrenoceptors, whereas NE hyperpolarization is mediated by alpha(2)-adrenoceptors. In 16 neurons depolarized by NE, amplitude of the action potential afterhyperpolarization (AHP) and its kinetics of decay (tau) were significantly reduced vs. control. No differences were found on the amplitude and tau of AHP in neurons hyperpolarized by NE. Using immunohistochemical techniques, we found that the distribution of tyrosine hydroxylase fibers within the DMV was significantly different within the mediolateral extent of DMV; however, distribution of cells responding to NE did not show a specific pattern of localization.  相似文献   

18.
Erhardt S  Engberg G 《Life sciences》2000,67(15):1901-1911
Previous electrophysiological studies have shown that the GABA(A)-receptor agonist muscimol is able to markedly increase the firing rate of rat nigral dopamine (DA) neurons. This action of the drug is paradoxical since local microiontophoretic application of the drug is associated with a clearcut inhibition of this neurons. In the present electrophysiological study, an attempt was made to analyze the mechanism of this action of the drug. Administration of muscimol (0.25-4.0 mg/kg, i.v.) was associated with a dose-dependent increase in firing rate as well as an increased bursting activity of the nigral DA neurons. Both these effects of muscimol were clearly antagonised by intravenous administration of the NMDA receptor antagonist MK 801(1 mg/kg) or by intracerebroventricular administration of the broad-spectrum excitatory amino acid receptor antagonist kynurenic acid. Furthermore, pretreatment with PNU 156561A (40 mg/kg, i.v., 5-8h), a compound that raised endogenous kynurenic acid levels about 9 times, also clearly antagonised the actions of muscimol. Indeed, this treatment reversed the excitatory action of muscimol into an inhibitory effect on the nigral DA neurons. Here, we report that the excitatory action of muscimol is mediated indirectly by release of glutamate.  相似文献   

19.
Vagal efferents, consisting of distinct lower motor and preganglionic parasympathetic fibers, constitute the motor limb of vagally mediated reflexes. Arising from the nucleus ambiguus, vagal lower motor neurons (LMN) mediate reflexes involving striated muscles of the orad gut. LMNs provide cholinergic innervation to motor end plates that are inhibited by myenteric nitrergic neurons. Preganglionic neurons from the dorsal motor nucleus implement parasympathetic motor and secretory functions. Cholinergic preganglionic neurons form parallel inhibitory and excitatory vagal pathways to smooth muscle viscera and stimulate postganglionic neurons via nicotinic and muscarinic receptors. In turn, the postganglionic inhibitory neurons release ATP, VIP, and NO, whereas the excitatory neurons release ACh and substance P. Vagal motor effects are dependent on the viscera's intrinsic motor activity and the interaction between the inhibitory and excitatory vagal influences. These interactions help to explain the physiology of esophageal peristalsis, gastric motility, lower esophageal sphincter, and pyloric sphincter. Vagal secretory pathways are predominantly excitatory and involve ACh and VIP as the postganglionic excitatory neurotransmitters. Vagal effects on secretory functions are exerted either directly or via release of local mediators or circulating hormones.  相似文献   

20.
The intermediate reticular formation (IRt) subjacent to the rostral (gustatory) nucleus of the solitary tract (rNST) receives projections from the rNST and appears essential to the expression of taste-elicited ingestion and rejection responses. We used whole cell patch-clamp recording and calcium imaging to characterize responses from an identified population of prehypoglossal neurons in the IRt to electrical stimulation of the rNST in a neonatal rat pup slice preparation. The calcium imaging studies indicated that IRt neurons could be activated by rNST stimulation and that many neurons were under tonic inhibition. Whole cell patch-clamp recording revealed mono- and polysynaptic projections from the rNST to identified prehypoglossal neurons. The projection was primarily excitatory and glutamatergic; however, there were some inhibitory GABAergic projections, and many neurons received excitatory and inhibitory inputs. There was also evidence of disinhibition. Overall, bath application of GABA(A) antagonists increased the amplitude of excitatory currents, and, in several neurons, stimulation of the rNST systematically decreased inhibitory currents. We have hypothesized that the transition from licks to gapes by natural stimuli, such as quinine monohydrochloride, could occur via such disinhibition. We present an updated dynamic model that summarizes the complex synaptic interface between the rNST and the IRt and demonstrates how inhibition could contribute to the transition from ingestion to rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号