首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently identified a cDNA encoding a putative isovaleryl-coenzyme A (CoA) dehydrogenase in Arabidopsis (AtIVD). In animals, this homotetrameric enzyme is located in mitochondria and catalyzes the conversion of isovaleryl-CoA to 3-methylcrotonyl-CoA as an intermediate step in the leucine (Leu) catabolic pathway. Expression of AtIVD:smGFP4 fusion proteins in tobacco (Nicotiana tabacum) protoplasts and biochemical studies now demonstrate the in vivo import of the plant isovaleryl-CoA dehydrogenase (IVD) into mitochondria and the enzyme in the matrix of these organelles. Two-dimensional separation of mitochondrial proteins by blue native and SDS-PAGE and size determination of the native and overexpressed proteins suggest homodimers to be the dominant form of the plant IVD. Northern-blot hybridization and studies in transgenic Arabidopsis plants expressing Ativd promoter:gus constructs reveal strong expression of this gene in seedlings and young plants grown in the absence of sucrose, whereas promoter activity in almost all tissues is strongly inhibited by exogeneously added sucrose. Substrate specificity tests with AtIVD expressed in Escherichia coli indicate a strong preference toward isovaleryl-CoA but surprisingly also show considerable activity with isobutyryl-CoA. This strongly indicates a commitment of the enzyme in Leu catabolism, but the activity observed with isobutyryl-CoA also suggests a parallel involvement of the enzyme in the dehydrogenation of intermediates of the valine degradation pathway. Such a dual activity has not been observed with the animal IVD and may suggest a novel connection of the Leu and valine catabolism in plants.  相似文献   

2.
Between the different types of Acyl-CoA dehydrogenases (ACADs), those specific for branched chain acyl-CoA derivatives are involved in the catabolism of amino acids. In mammals, isovaleryl-CoA dehydrogenase (IVD), an enzyme of the leucine catabolic pathway, is a mitochondrial protein, as other acyl-CoA dehydrogenases involved in fatty acid beta-oxidation. In plants, fatty acid beta-oxidation takes place mainly in peroxisomes, and the cellular location of the enzymes involved in the catabolism of branched-chain amino acids had not been definitely assigned. Here, we describe that highly purified potato mitochondria have important IVD activity. The enzyme was partially purified and cDNAs from two different genes were obtained. The partially purified enzyme has enzymatic constant values with respect to isovaleryl-CoA comparable to those of the mammalian enzyme. It is not active towards straight-chain acyl-CoA substrates tested, but significant activity was also found with isobutyryl-CoA, implying an additional role of the enzyme in the catabolism of valine. The present study confirms recent reports that in plants IVD activity resides in mitochondria and opens the way to a more detailed study of amino-acid catabolism in plant development.  相似文献   

3.
Branched-chain α-ketoacid dehydrogenase complex (BCKDC) is a rate-limiting enzyme in the branched-chain amino acid catabolic pathway. We have developed a method of BCKDC purification from rat liver using hydrophobic interaction column chromatography (Shimomura et al., Arch. Biochem. Biophys., 283, 293–299 (1990)). Here we report a modification of the method designed to obtain the purified enzyme with high reproducibility.  相似文献   

4.
5.
Sycamore suspension cells ( Acer pseudoplatanus L.) were incubated in the presence of sulfonylurea and imidazolinone herbicides. These inhibitors of acetolactate synthase (ALS), a key enzyme of branched-chain amino acid synthesis, triggered a dramatic induction of the alternative oxidase (AOX). AOX activity increased in treated cells, eventually exceeding cytochrome (cyt) pathway activity. This induction of AOX activity was correlated with the accumulation of a 35 kDa AOX protein in isolated mitochondria, detected by Western blotting with a monoclonal antibody against Sauromatum guttatum AOX. It was preceded by the accumulation of putative 1.6 kb AOX mRNA, detected using an Aox cDNA probe from soybean. The metabolic perturbations induced by the herbicides rather than the herbicide molecules themselves were responsible for this induction of AOX. However, α-oxobutyrate (one of the substrates of ALS) and its transamination product, α-aminobutyrate, which accumulated after herbicide treatment, were not involved. The inhibition of branched-chain amino acid synthesis was probably somehow responsible for the AOX induction since: (i) a mixture of those amino acids (leucine, isoleucine, valine) prevented AOX induction by ALS inhibitors; (ii) the herbicide Hoe 704, a potent inhibitor of acetolactate reducto-isomerase (the enzyme following ALS in the branched-chain amino acid pathway), also triggered AOX induction.  相似文献   

6.
The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides/antibiotics. During the last decade we have developed a yeast species, Saccharomyces kluyveri, as a model and tool to study the genes and enzymes of the pyrimidine catabolic pathway. In this report, we studied degradation of uracil and its putative degradation products in 38 yeasts and showed that this pathway was present in the ancient yeasts but was lost approximately 100 million years ago in the S. cerevisiae lineage.  相似文献   

7.
Astroglia-rich primary cultures and brain slices rapidly metabolize branched-chain amino acids (BCAAs), in particular leucine, as energy substrates. To allocate the capacity to degrade leucine oxidatively in neural cells, we have purified beta-methylcrotonyl-CoA carboxylase (beta-MCC) from rat liver as one of the enzymes unique for the irreversible catabolic pathway of leucine. Polyclonal antibodies raised against beta-MCC specifically cross-reacted with both enzyme subunits in liver and brain homogenates. Immunocytochemical examination of astroglia-rich rat primary cultures demonstrated the presence of beta-MCC in astroglial cells, where the enzyme was found to be located in the mitochondria, the same organelle that the mitochondrial isoform of the BCA(A) aminotransferase (BCAT) is located in. This colocalization of the two enzymes supports the hypothesis that mitochondrial BCAT is the isoenzyme that in brain energy metabolism prepares the carbon skeleton of leucine for irreversible degradation in astrocytes. Analysis of neuron-rich primary cultures revealed also that the majority of neurons contained beta-MCC. The presence of beta-MCC in most neurons demonstrates their ability to degrade the alpha-ketoisocaproate that could be provided by neighboring astrocytes or could be generated locally from leucine by the action of the cytosolic isoform of BCAT that is known to occur in neurons.  相似文献   

8.
9.
Short/branched chain acyl-CoA dehydrogenase (SBCAD), isovaleryl-CoA dehydrogenase (IVD), and isobutyryl-CoA dehydrogenase (IBD) are involved in metabolism of isoleucine, leucine, and valine, respectively. These three enzymes all belong to acyl-CoA dehydrogenase (ACD) family, and catalyze the dehydrogenation of monomethyl branched-chain fatty acid (mmBCFA) thioester derivatives. In the present work, the catalytic properties of rat SBCAD, IVD, and IBD, including their substrate specificity, isomerase activity, and enzyme inhibition, were comparatively studied. Our results indicated that SBCAD has its catalytic properties relatively similar to those of straight-chain acyl-CoA dehydrogenases in terms of their isomerase activity and enzyme inhibition, while IVD and IBD are different. IVD has relatively broader substrate specificity than those of the other two enzymes in accommodating various substrate analogs. The present study increased our understanding for the metabolism of monomethyl branched-chain fatty acids (mmBCFAs) and branched-chain amino acids (BCAAs), which should also be useful for selective control of a particular reaction through the design of specific inhibitors.  相似文献   

10.
The isovaleric acid-emanating silkworm mutant skunk (sku) was first studied over 30?years ago because of its unusual odour and prepupal lethality. Here, we report the identification and characterization of the gene responsible for the sku mutant. Because of its specific features and symptoms similar to human isovaleryl-CoA dehydrogenase (IVD) deficiency, also known as isovaleric acidaemia, IVD dysfunction in silkworms was predicted to be responsible for the phenotype of the sku mutant. Linkage analysis revealed that the silkworm IVD gene (BmIVD) was closely linked to the odorous phenotype as expected, and a single amino acid substitution (G376V) was found in BmIVD of the sku mutant. To investigate the effect of the G376V substitution on BmIVD function, wild-type and sku-type recombinants were constructed with a baculovirus expression system and the subsequent enzyme activity of sku-type BmIVD was shown to be significantly reduced compared with that of wild-type BmIVD. Molecular modelling suggested that this reduction in the enzyme activity may be due to negative effects of G376V mutation on FAD-binding or on monomer-monomer interactions. These observations strongly suggest that BmIVD is responsible for the sku locus and that the molecular defect in BmIVD causes the characteristic smell and prepupal lethality of the sku mutant. To our knowledge, this is, aside from humans, the first characterization of IVD deficiency in metazoa. Considering that IVD acts in the third step of leucine degradation and the sku mutant accumulates branched-chain amino acids in haemolymph, this mutant may be useful in the investigation of unique branched-chain amino acid catabolism in insects.  相似文献   

11.
Isovaleryl-CoA dehydrogenase (IVD, EC ) catalyzes the third step in the catabolism of leucine in mammals. Deficiency of this enzyme leads to the clinical disorder isovaleric acidemia. IVD has been purified and characterized from human and rat liver, and the x-ray crystallographic structure of purified recombinant human IVD has been reported. Nothing is known about IVD activity in plants, although cDNA clones from Arabidopsis thaliana and partial sequences from Gossypium hirsutum and Oryza sativa have been identified as putative IVDs based on sequence homology and immuno cross-reactivity. In this report we describe the identification and characterization of an IVD from pea, purification of the enzyme using a novel and rapid auxin affinity chromatography matrix, and cloning of the corresponding gene. At the amino acid level, pea IVD is 60% similar to human and rat IVD. The specific activity and abundance of plant IVD was found to be significantly lower than for its human counterpart and exhibits developmental regulation. Substrate specificity of the plant enzyme is similar to the human IVD, and it cross-reacts to anti-human IVD antibodies. Molecular modeling of the pea enzyme based on the structure of human IVD indicates a high degree of structural similarity among these enzymes. Glu-244, shown to function as the catalytic base in human IVD along with most of the amino acids that make up the acyl CoA binding pocket, is conserved in pea IVD. The genomic structure of the plant IVD gene consists of 13 exons and 12 introns, spanning approximately 4 kilobases, and the predicted RNA splicing sites exhibit the extended consensus sequence described for other plant genes.  相似文献   

12.
The catabolic pathways of branched-chain amino acids have two common steps. The first step is deamination catalyzed by the vitamin B(6)-dependent branched-chain aminotransferase isozymes (BCATs) to produce branched-chain alpha-keto acids (BCKAs). The second step is oxidative decarboxylation of the BCKAs mediated by the branched-chain alpha-keto acid dehydrogenase enzyme complex (BCKD complex). The BCKD complex is organized around a cubic core consisting of 24 lipoate-bearing dihydrolipoyl transacylase (E2) subunits, associated with the branched-chain alpha-keto acid decarboxylase/dehydrogenase (E1), dihydrolipoamide dehydrogenase (E3), BCKD kinase, and BCKD phosphatase. In this study, we provide evidence that human mitochondrial BCAT (hBCATm) associates with the E1 decarboxylase component of the rat or human BCKD complex with a K(D) of 2.8 microM. NADH dissociates the complex. The E2 and E3 components do not interact with hBCATm. In the presence of hBCATm, k(cat) values for E1-catalyzed decarboxylation of the BCKAs are enhanced 12-fold. Mutations of hBCATm proteins in the catalytically important CXXC center or E1 proteins in the phosphorylation loop residues prevent complex formation, indicating that these regions are important for the interaction between hBCATm and E1. Our results provide evidence for substrate channeling between hBCATm and BCKD complex and formation of a metabolic unit (termed branched-chain amino acid metabolon) that can be influenced by the redox state in mitochondria.  相似文献   

13.
The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides/antibiotics. During the last decade we have developed a yeast species, Saccharomyces kluyveri, as a model and tool to study the genes and enzymes of the pyrimidine catabolic pathway. In this report, we studied degradation of uracil and its putative degradation products in 38 yeasts and showed that this pathway was present in the ancient yeasts but was lost approximately 100 million years ago in the S. cerevisiae lineage.  相似文献   

14.
15.
Expression of 3-hydroxyisobutyrate dehydrogenase in cultured neural cells   总被引:4,自引:0,他引:4  
The branched-chain amino acids (BCAAs) – isoleucine, leucine, and valine – belong to the limited group of substances transported through the blood–brain barrier. One of the functions they are thought to have in brain is to serve as substrates for meeting parenchymal energy demands. Previous studies have shown the ubiquitous expression of a branched-chain alpha-keto acid dehydrogenase among neural cells. This enzyme catalyzes the initial and rate-limiting step in the irreversible degradative pathway for the carbon skeleton of valine and the other two branched-chain amino acids. Unlike the acyl-CoA derivates in the irreversible part of valine catabolism, 3-hydroxyisobutyrate could be expected to be released from cells by transport across the mitochondrial and plasma membranes. This could indeed be demonstrated for cultured astroglial cells. Therefore, to assess the ability of neural cells to make use of this valine-derived carbon skeleton as a metabolic substrate for the generation of energy, we investigated the expression in cultured neural cells of the enzyme processing this hydroxy acid, 3-hydroxyisobutyrate dehydrogenase (HIBDH). To achieve this, HIBDH was purified from bovine liver to serve as antigen for the production of an antiserum. Affinity-purified antibodies against HIBDH specifically recognized the enzyme in liver and brain homogenates. Immunocytochemistry demonstrated the ubiquitous expression of HIBDH among cultured glial (astroglial, oligodendroglial, microglial, and ependymal cells) and neuronal cells. Using an RT-PCR technique, these findings were corroborated by the detection of HIBDH mRNA in these cells. Furthermore, immunofluorescence double-labeling of astroglial cells with antisera against HIBDH and the mitochondrial marker pyruvate dehydrogenase localized HIBDH to mitochondria. The expression of HIBDH in neural cells demonstrates their potential to utilize valine imported into the brain for the generation of energy.  相似文献   

16.
The nutritional quality of crop plants is determined by their content in essential amino acids provided in food for humans or in feed for monogastric animals. Amino acid composition of crop–based diets can be improved via manipulation of the properties of key enzymes of amino acid biosynthetic pathways by mutation and transformation. We focused on the aspartate-derived amino acid pathway producing four essential amino acids: lysine, threonine, isoleucine and methionine. Genes encoding aspartate kinase (AK) and dihydrodipicolinate synthase (DHDPS) that operate as key genes of the aspartate pathway have been cloned from Arabidopsis. Genetic and molecular studies revealed that at least five different ak genes are represented. Some of them were characterized in terms of gene and promoter structure, developmental expression and regulatory properties. In the case of dhdps, two quite identical genes have been identified and characterized at expression level. Mutated genes encoding a fully feedback-insensitive form of the DHDPS enzyme were obtained from Nicotiana sylvestris and Arabidopsis. Several chimeric constructs harbouring this mutated allele under the control of constitutive or seed-specific promoters were transferred via Agrobacterium or biolistics in various plant species. In all cases, lines with significant increase of free lysine content were obtained in vegetative organs, but the impact of the transgene in seeds is limited due to the presence of an active catabolic enzyme, lysine ketoreductase. These results show that, although dealing with a complex, highly regulated pathway, the overexpression of a single gene encoding a feedback-insensitive form of the key enzyme DHDPS exerts a significant effect on the carbon flux through the aspartate pathway towards lysine production.  相似文献   

17.
18.
19.
The sub-cellular location of enzymes of fatty acid β-oxidation in plants is controversial. In the current debate the role and location of particular thiolases in fatty acid degradation, fatty acid synthesis and isoleucine degradation are important. The aim of this research was to determine the sub-cellular location and hence provide information about possible functions of all the putative 3-ketoacyl-CoA thiolases (KAT) and acetoacetyl-CoA thiolases (ACAT) in Arabidopsis. Arabidopsis has three genes predicted to encode KATs, one of which encodes two polypeptides that differ at the N-terminal end. Expression in Arabidopsis cells of cDNAs encoding each of these KATs fused to green fluorescent protein (GFP) at their C-termini showed that three are targeted to peroxisomes while the fourth is apparently cytosolic. The four KATs are also predicted to have mitochondrial targeting sequences, but purified mitochondria were unable to import any of the proteins in vitro. Arabidopsis also has two genes encoding a total of five different putative ACATs. One isoform is targeted to peroxisomes as a fusion with GFP, while the others display no targeting in vivo as GFP fusions, or import into isolated mitochondria. Analysis of gene co-expression clusters in Arabidopsis suggests a role for peroxisomal KAT2 in β-oxidation, while KAT5 co-expresses with genes of the flavonoid biosynthesis pathway and cytosolic ACAT2 clearly co-expresses with genes of the cytosolic mevalonate biosynthesis pathway. We conclude that KATs and ACATs are present in the cytosol and peroxisome, but are not found in mitochondria. The implications for fatty acid β-oxidation and for isoleucine degradation in mitochondria are discussed.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

20.
Zhu X  Tang G  Granier F  Bouchez D  Galili G 《Plant physiology》2001,126(4):1539-1545
Plants possess both anabolic and catabolic pathways for the essential amino acid lysine (Lys). However, although the biosynthetic pathway was clearly shown to regulate Lys accumulation in plants, the functional significance of Lys catabolism has not been experimentally elucidated. To address this issue, we have isolated an Arabidopsis knockout mutant with a T-DNA inserted into exon 13 of the gene encoding Lys ketoglutarate reductase/saccharopine dehydrogenase. This bifunctional enzyme controls the first two steps of Lys catabolism. The phenotype of the LKR/SDH knockout was indistinguishable from wild-type plants under normal growth conditions, suggesting that Lys catabolism is not an essential pathway under standard growth conditions. However, mature seeds of the knockout mutant over-accumulated Lys compared with wild-type plants. This report provides the first direct evidence for the functional significance of Lys catabolism in regulating Lys accumulation in seeds. Such a knockout mutant may also provide new perspectives to improve the level of the essential amino acid Lys in plant seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号