首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Many of the molecular details regarding the promotion of flowering in response to prolonged exposure to cold temperatures (vernalization) and daylength have recently been elucidated in Arabidopsis. The daylength and vernalization pathway converge in the regulation of floral promoters referred to as floral integrators. In the meristem, vernalization promotes flowering through the epigenetic repression of the floral repressor FLOWERING LOCUS C. This allows for the induction of floral integrators by CONSTANS under inductive long days. In the vasculature of leaves, CONSTANS protein is produced only in long days where it acts to promote the expression of FLOWERING LOCUS T (FT). FT protein is then translocated to the meristem where it acts to promote floral induction. Thus a detailed molecular framework for the regulation of flowering time has now been established in Arabidopsis.  相似文献   

3.
In Arabidopsis thaliana, vernalization promotes flowering by repressing the floral inhibitor FLOWERING LOCUS C (AtFLC). This repression is mediated through epigenetic modifications at the AtFLC locus, leading to gene silencing. Whether the well-known quantitative effect of vernalization is due to the degree of AtFLC repression and/or its stability after return to normal temperature conditions has not been clarified. Here, we examine this question in white mustard, Sinapis alba, taking advantage of our recent cloning of the AtFLC ortholog SaFLC.Key words: Brassicaceae, flowering, FLOWERING LOCUS C, Sinapis alba, vernalization  相似文献   

4.
Integration of flowering signals in winter-annual Arabidopsis   总被引:12,自引:0,他引:12       下载免费PDF全文
Photoperiod is the primary environmental factor affecting flowering time in rapid-cycling accessions of Arabidopsis (Arabidopsis thaliana). Winter-annual Arabidopsis, in contrast, have both a photoperiod and a vernalization requirement for rapid flowering. In winter annuals, high levels of the floral inhibitor FLC (FLOWERING LOCUS C) suppress flowering prior to vernalization. FLC acts to delay flowering, in part, by suppressing expression of the floral promoter SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1). Vernalization leads to a permanent epigenetic suppression of FLC. To investigate how winter-annual accessions integrate signals from the photoperiod and vernalization pathways, we have examined activation-tagged alleles of FT and the FT homolog, TSF (TWIN SISTER OF FT), in a winter-annual background. Activation of FT or TSF strongly suppresses the FLC-mediated late-flowering phenotype of winter annuals; however, FT and TSF overexpression does not affect FLC mRNA levels. Rather, FT and TSF bypass the block to flowering created by FLC by activating SOC1 expression. We have also found that FLC acts as a dosage-dependent inhibitor of FT expression. Thus, the integration of flowering signals from the photoperiod and vernalization pathways occurs, at least in part, through the regulation of FT, TSF, and SOC1.  相似文献   

5.
6.
Dissection of floral induction pathways using global expression analysis   总被引:40,自引:0,他引:40  
Flowering of the reference plant Arabidopsis thaliana is controlled by several signaling pathways, which converge on a small set of genes that function as pathway integrators. We have analyzed the genomic response to one type of floral inductive signal, photoperiod, to dissect the function of several genes transducing this stimulus, including CONSTANS, thought to be the major output of the photoperiod pathway. Comparing the effects of CONSTANS with those of FLOWERING LOCUS T, which integrates inputs from CONSTANS and other floral inductive pathways, we find that expression profiles of shoot apices from plants with mutations in either gene are very similar. In contrast, a mutation in LEAFY, which also acts downstream of CONSTANS, has much more limited effects. Another pathway integrator, SUPPRESSOR OF OVEREXPRESSION OF CO 1, is responsive to acute induction by photoperiod even in the presence of the floral repressor encoded by FLOWERING LOCUS C. We have discovered a large group of potential floral repressors that are down-regulated upon photoperiodic induction. These include two AP2 domain-encoding genes that can repress flowering. The two paralogous genes, SCHLAFMUTZE and SCHNARCHZAPFEN, share a signature with partial complementarity to the miR172 microRNA, whose precursor we show to be induced upon flowering. These and related findings on SPL genes suggest that microRNAs play an important role in the regulation of flowering.  相似文献   

7.
Winter varieties of plants can flower only after exposure to prolonged cold. This phenomenon is known as vernalization and has been widely studied in the model plant Arabidopsis thaliana as well as in monocots. Through the repression of floral activator genes, vernalization prevents flowering in winter. In Arabidopsis, FLOWERING LOCUS C or FLC is the key repressor during vernalization, while in monocots vernalization is regulated through VRN1, VRN2 and VRN3 (or FLOWERING LOCUS T). Interestingly, VRN genes are not homologous to FLC but FLC homologs are found to have a significant role in vernalization response in cereals. The presence of FLC homologs in monocots opens new dimensions to understand, compare and retrace the evolution of vernalization pathways between monocots and dicots. In this review, we discuss the molecular mechanism of vernalization-induced flowering along with epigenetic regulations in Arabidopsis and temperate cereals. A better understanding of cold-induced flowering will be helpful in crop breeding strategies to modify the vernalization requirement of economically important temperate cereals.  相似文献   

8.
The timing of floral transition has significant consequences for reproductive success in plants. The molecular genetic dissection of flowering time control in Arabidopsis identified an integrated network of pathways that quantitatively control this developmental switch. A central player in this process is the FLOWERING LOCUS C gene (FLC), which blocks flowering by inhibiting the genes required to switch the meristem from vegetative to floral development. Three systems (the FRIGIDA gene, vernalization, and the autonomous pathway) all influence the state of FLC. Last years many new genes have been identified that regulate FLC expression, and most of them are involved in the modification of FLC chromatin. This review focuses on recent insights in FLC regulation.  相似文献   

9.
Appropriate timing of flowering is critical for propagation and reproductive success in plants. Therefore, flowering time is coordinately regulated by endogenous developmental programs and external signals, such as changes in photoperiod and temperature. Flowering is delayed by a transient shift to cold temperatures that frequently occurs during early spring in the temperate zones. It is known that the delayed flowering by short-term cold stress is mediated primarily by the floral repressor FLOWERING LOCUS C (FLC). However, how the FLC-mediated cold signals are integrated into flowering genetic pathways is not fully understood. We have recently reported that the INDUCER OF CBF EXPRESSION 1 (ICE1), which is a master regulator of cold responses, FLC, and the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) constitute an elaborated feedforward-feedback loop that integrates photoperiod and cold temperature signals to regulate seasonal flowering in Arabidopsis. Cold temperatures promote the binding of ICE1 to FLC promoter to induce its expression, resulting in delayed flowering. However, under floral inductive conditions, SOC1 induces flowering by blocking the ICE1 activity. We propose that the ICE1-FLC-SOC1 signaling network fine-tunes the timing of photoperiodic flowering during changing seasons.  相似文献   

10.
11.
12.
13.
14.
Herbaceous model species, especially Arabidopsis has provided a wealth of information about the genes involved in floral induction and development of inflorescences and flowers. While the genus Populus is an important model system for the molecular biology of woody plant. These two genuses differ in many ways. This study was designed to improve understanding of flower development in poplar at a system level, as its regulatory pathway to a large extent remains poorly known, owing to the presently limited mutant pool. To address this issue, a poplar GeneChip was employed to detect genes expressed during the whole floral developmental process. Using the expressed floral genes, a systematic gene network was constructed with the aid of functional association with Arabidopsis. The results suggested that autonomous, gibberellin, vernalization, photoperiod, ethylene, brassinosteroid, stress-induced and floral suppression pathways are involved in poplar flowering. Modularity analysis revealed several pathways in common with Arabidopsis, such as autonomous, gibberellin, vernalization and photoperiod pathways. In addition, brassinosteroid, stress-induced and floral suppression pathways were implicated as additional novel pathways. Notably, a difference in vernalization between Arabidopsis and poplar was revealed. Autonomous, gibberellin, vernalization, photoperiod, ethylene, brassinosteroid, stress-induced and floral suppression pathways integrated into a systematic gene network in floral development of poplar. Compared to Arabidopsis, brassinosteroid, stress-induced and floral suppression pathways are additional in poplar, and FLC is absent in vernalization pathway in poplar. Preliminary conclusions drawn here provide a basis for both identification of key genes and elucidation of molecular mechanisms involved in poplar floral development.  相似文献   

15.
The timing of flowering is coordinated by a web of gene regulatory networks that integrates developmental and environmental cues in plants. Light and temperature are two major environmental determinants that regulate flowering time. Although prolonged treatment with low nonfreezing temperatures accelerates flowering by stable repression of FLOWERING LOCUS C (FLC), repeated brief cold treatments delay flowering. Here, we report that intermittent cold treatments trigger the degradation of CONSTANS (CO), a central activator of photoperiodic flowering; daily treatments caused suppression of the floral integrator FLOWERING LOCUS T (FT) and delayed flowering. Cold-induced CO degradation is mediated via a ubiquitin/proteasome pathway that involves the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 1 (HOS1). HOS1-mediated CO degradation occurs independently of the well established cold response pathways. It is also independent of the light signaling repressor CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) E3 ligase and light wavelengths. CO has been shown to play a key role in photoperiodic flowering. Here, we demonstrated that CO served as a molecular hub, integrating photoperiodic and cold stress signals into the flowering genetic pathways. We propose that the HOS1-CO module contributes to the fine-tuning of photoperiodic flowering under short term temperature fluctuations, which often occur during local weather disturbances.  相似文献   

16.
The timing of flowering is pivotal for maximizing reproductive success under fluctuating environmental conditions. Flowering time is tightly controlled by complex genetic networks that integrate endogenous and exogenous cues, such as light, temperature, photoperiod, and hormones. Here, we show that AGAMOUS-LIKE16 (AGL16) and its negative regulator microRNA824 (miR824) control flowering time in Arabidopsis thaliana. Knockout of AGL16 effectively accelerates flowering in nonvernalized Col-FRI, in which the floral inhibitor FLOWERING LOCUS C (FLC) is strongly expressed, but shows no effect if plants are vernalized or grown in short days. Alteration of AGL16 expression levels by manipulating miR824 abundance influences the timing of flowering quantitatively, depending on the expression level and number of functional FLC alleles. The effect of AGL16 is fully dependent on the presence of FLOWERING LOCUS T (FT). Further experiments show that AGL16 can interact directly with SHORT VEGETATIVE PHASE and indirectly with FLC, two proteins that form a complex to repress expression of FT. Our data reveal that miR824 and AGL16 modulate the extent of flowering time repression in a long-day photoperiod.  相似文献   

17.
The switch from vegetative to reproductive growth is extremely stable even if plants are only transiently exposed to environmental stimuli that trigger flowering. In the photoperiodic pathway, a mobile signal, florigen, encoded by FLOWERING LOCUS T (FT) in Arabidopsis thaliana, induces flowering. Because FT activity in leaves is not maintained after transient photoperiodic induction, the molecular basis for stable floral commitment is unclear. Here, we show that Polycomb-group (Pc-G) proteins, which mediate epigenetic gene regulation, maintain the identity of inflorescence and floral meristems after floral induction. Thus, plants with reduced Pc-G activity show a remarkable increase of cauline leaves under noninductive conditions and floral reversion when shifted from inductive to noninductive conditions. These phenotypes are almost completely suppressed by loss of FLOWERING LOCUS C (FLC) and SHORT VEGETATIVE PHASE, which both delay flowering and promote vegetative shoot identity. Upregulation of FLC in Pc-G mutants leads to a strong decrease of FT expression in inflorescences. We find that this activity of FT is needed to prevent floral reversion. Collectively, our results reveal that floral meristem identity is at least partially maintained by a daylength-independent role of FT whose expression is indirectly sustained by Pc-G activity.  相似文献   

18.
Light and temperature signals are the most important environmental cues regulating plant growth and development. Plants have evolved various strategies to prepare for, and adapt to environmental changes. Plants integrate environmental cues with endogenous signals to regulate various physiological processes, including flowering time. There are at least five distinct pathways controlling flowering in the model plant Arabidopsis thaliana: the photoperiod pathway, the vernalization/thermosensory pathway, the autonomous floral initiation, the gibberellins pathway, and the age pathway. The photoperiod and temperature/vernalization pathways mainly perceive external signals from the environment, while the autonomous and age pathways transmit endogenous cues within plants. In many plant species, floral transition is precisely controlled by light signals(photoperiod) and temperature to optimize seed production in specific environments. The molecular mechanisms by which light and temperature control flowering responses have been revealed using forward and reverse genetic approaches. Here we focus on the recent advances in research on flowering responses to light and temperature.  相似文献   

19.
SWI/SNF complexes mediate ATP-dependent chromatin remodeling to regulate gene expression. Many components of these complexes are evolutionarily conserved, and several subunits of Arabidopsis thaliana SWI/SNF complexes are involved in the control of flowering, a process that depends on the floral repressor FLOWERING LOCUS C (FLC). BAF60 is a SWI/SNF subunit, and in this work, we show that BAF60, via a direct targeting of the floral repressor FLC, induces a change at the high-order chromatin level and represses the photoperiod flowering pathway in Arabidopsis. BAF60 accumulates in the nucleus and controls the formation of the FLC gene loop by modulation of histone density, composition, and posttranslational modification. Physiological analysis of BAF60 RNA interference mutant lines allowed us to propose that this chromatin-remodeling protein creates a repressive chromatin configuration at the FLC locus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号