首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The assembly of nucleocapsids is an essential step in the replicative cycle of vesicular stomatitis virus (VSV). In this study, we have examined the early events of vesicular stomatitis virus nucleocapsid assembly in BHK-21 cells. Nuclease-resistant intracellular nucleocapsids were isolated at various stages of assembly and analyzed for RNA and protein contents. The smallest ribonucleoprotein complex formed during nucleocapsid assembly contains the 5'-terminal 65 nucleotides of nascent viral RNA complexed with the viral proteins N and NS. Elongation of the assembling nucleocapsids proceeds unidirectionally towards the 3' terminus by the sequential addition of viral proteins which incrementally protect short stretches of the growing RNA chain. Pulse-chase studies show that the assembling nucleocapsids can be chased into full-length nucleocapsids which are incorporated into mature virions. Our results also suggest an involvement of the cytoskeletal framework during nucleocapsid assembly.  相似文献   

4.
The purpose of these experiments was to study the physical structure of the nucleocapsid-M protein complex of vesicular stomatitis virus by analysis of nucleocapsid binding by wild-type and mutant M proteins and by limited proteolysis. We used the temperature-sensitive M protein mutant tsO23 and six temperature-stable revertants of tsO23 to test the effect of sequence changes on M protein binding to the nucleocapsid as a function of NaCl concentration. The results showed that M proteins from wild-type, mutant, and three of the revertant viruses had similar NaCl titration curves, while the curve for M proteins from the other three revertants differed significantly. The altered NaCl dependence of M protein was correlated with a single amino acid substitution from Phe to Leu at position 111 compared with the original temperature-sensitive mutant and was not correlated with a substitution of Gly to Glu at position 21 in tsO23 and the revertants. To determine whether protease cleavage sites in the M protein were protected by interaction with the nucleocapsid, nucleocapsid-M protein complexes were subjected to limited proteolysis with trypsin, chymotrypsin, or Staphylococcus aureus V8 protease. The initial trypsin and chymotrypsin cleavage sites, located after amino acids 19 and 20, respectively, were as accessible to proteases when M protein was bound to the nucleocapsid as when it was purified, indicating that this region of the protein does not interact directly with the nucleocapsid. Furthermore, trypsin or chymotrypsin treatment released the M protein fragments from the nucleocapsid, presumably due to conformational changes following proteolysis. V8 protease cleaved the M protein at position 34 or 50, producing two distinct fragments. The M protein fragment produced by V8 protease cleavage at position 34 remained associated with the nucleocapsid, while the fragment produced by cleavage at position 50 was released from the nucleocapsid. These results suggest that the amino-terminal region of the M protein around amino acid 20 does not interact directly with the nucleocapsid and that conformational changes resulting from single-amino-acid substitutions at other sites in the M protein are important for this interaction.  相似文献   

5.
6.
7.
8.
P E Kaptur  B J McCreedy  Jr    D S Lyles 《Journal of virology》1992,66(9):5384-5392
We mapped the in vivo phosphorylation sites for the matrix (M) protein of the Orsay and San Juan strains of vesicular stomatitis virus, Indiana serotype, using limited proteolysis and phosphoamino acid analysis. M protein was solubilized from 32P-labeled virions by using detergent and high-salt conditions, then treated with either trypsin or Staphylococcus aureus V8 protease, and analyzed by polyacrylamide gel electrophoresis and autoradiography to determine which fragments contained phosphate residues. The M protein fragment extending from amino acid 20 to the carboxy terminus contained approximately 70% of the control 32P label, while the fragment extending from amino acid 35 to the carboxy terminus had only trace amounts of label. These data indicate that the major phosphorylation site was between amino acids 20 and 34 in the Orsay strain M protein. Phosphoamino acid analysis of M protein by thin-layer electrophoresis showed the presence of phosphothreonine and phosphoserine and that phosphothreonine continued to be released after prolonged vapor-phase acid hydrolysis. These data identify Thr-31 as the primary in vivo phosphate acceptor for M protein of the Orsay strain of vesicular stomatitis virus. The San Juan strain M protein has serine at position 32, which may also be an important phosphate acceptor. In addition, phosphorylation at Ser-2, -3, or -17 occurs to a greater extent in the San Juan strain M protein than in the Orsay strain M protein. The subcellular distribution of phosphorylated M protein was investigated to determine a probable intracellular site(s) of phosphorylation. Phosphorylated M protein was associated primarily with cellular membranes, suggesting phosphorylation by a membrane-associated kinase. Virion M protein was phosphorylated to a greater extent than membrane-bound M protein, indicating that M protein phosphorylation occurs at a late stage in virus assembly. Phosphorylation of wild-type and temperature-sensitive mutant M protein was studied in vivo at the nonpermissive temperature. The data show that phosphorylated M protein was detected only in wild-type virus-infected cells and virions, suggesting that association with nucleocapsids may be required for M protein phosphorylation or that misfolding of mutant M protein at the nonpermissive temperature prevents phosphorylation.  相似文献   

9.
The matrix (M) protein of vesicular stomatitis virus (VSV) is a major structural component of the virion which is generally believed to bridge between the membrane envelope and the ribonucleocapsid (RNP) core. To investigate the interaction of M protein with cellular membranes in the absence of other VSV proteins, we examined its distribution by subcellular fractionation after expression in HeLa cells. Approximately 90% of M protein, expressed without other viral proteins, was soluble, whereas the remaining 10% was tightly associated with membranes. A similar distribution in VSV-infected cells has been observed previously. Conditions known to release peripherally associated membrane proteins did not detach M protein from isolated membranes. Membrane-associated M protein was soluble in the detergent Triton X-114, whereas soluble M protein was not, suggesting a chemical or conformational difference between the two forms. Membranes containing associated M protein were able to bind RNP cores, whereas membranes lacking M protein were not. We suggest that this membrane-bound M fraction constitutes a functional subset of M protein molecules required for the attachment of RNP cores to membranes during normal virus budding.  相似文献   

10.
We demonstrated recently that a fraction of the matrix (M) protein of vesicular stomatitis virus (VSV) binds tightly to cellular membranes in vivo when expressed in the absence of other VSV proteins. This membrane-associated M protein was functional in binding purified VSV nucleocapsids in vitro. Here we show that the membrane-associated M protein is largely associated with a membrane fraction having the density of plasma membranes, indicating membrane specificity in the binding. In addition, we analyzed truncated forms of M protein to identify regions responsible for membrane association and nucleocapsid binding. Truncated M protein lacking the amino-terminal basic domain still associated with cellular membranes, although not as tightly as wild-type M protein, and could not bind nucleocapsids. In contrast, deletion of the carboxy-terminal 14 amino acids did not disrupt stable membrane association or nucleocapsid interaction. These results suggest that the amino terminus of M protein either interacts directly with membranes and nucleocapsids or stabilizes a conformation that is required for M protein to mediate both of these interactions.  相似文献   

11.
Vesicular stomatitis virus (VSV) forms pseudotypes with envelope components of reticuloendotheliosis virus (REV). The VSV pseudotype possesses the limited host range and antigenic properties of REV. Approximately 70% of the VSV, Indiana serotype, and 45% of VSV, New Jersey serotype, produced from the REV strain T-transformed chicken bone marrow cells contain mixed envelope components of both VSV and REV. VSV pseudotypes with mixed envelope antigens can be neutralized with excess amounts of either anti-VSV antiserum or anti-REV antiserum.  相似文献   

12.
13.
Methylated and blocked 5' termini in vesicular stomatitis virus in vivo mRNAs.   总被引:15,自引:0,他引:15  
Methyl groups derived from 3H-methyl methionine were incorporated into vesicular stomatitis virus (VSV) MRNAs isolated from infected cells. Sequential degradation of the 12-18S viral mRNA species with ribonuclease T2, penicillium nuclease, and alkaline phosphatase yielded a single 3H-labeled dinucleotide. A similar resistant 32P-labeled fragment was obtained by digesting VSV mRNA uniformly labeled with 32P. This methylated and blocked oligomer was further cleaved with nucleotide pyrophosphatase, yielding two methylated 5' nucleotides. We postulate that the 5' terminal structure of the vivo 12-18S VSV mRNA contains 7-methylguanosine linked by a 5'-5' pyrophosphate bond to a methylated derivative of adenosine. In contrast to the mRNAs (+ strand), the VSV genome RNA ( MINUS STRAND) IS NOT BLOCKED.  相似文献   

14.
15.
To explore the interaction of vesicular stomatitis virus (VSV) proteins with cellular membranes, we have isolated membranes from infected cells that have been radioactively pulse-labeled. We have found conditions of isolation that result in membrane preparation which contain primarily the VSV membrane protein (M) and glycoprotein (G). Both of these proteins are very firmly attached to membranes: conditions known to release peripherally associated membrane proteins from membranes (S. Razin, Biochim, Biophys. Acta 265:241-246, 1972; S. J. Singer, Annu. Rev. Biochem. 43:805-826, 1974; S. J. Singer and G. L. Nicholson, Science 175:720-731, 1972) are ineffective in detaching either the G or the M protein. The results of trypsin digestion of these membrane fractions suggest that the M protein resides primarily on one side, the cytoplasmic side of cellular membranes, whereas the glycoprotein has been transported to the lumen of the membrane vesicle. However, we present evidence that the glycoprotein is transmembranal and that approximately 3,000 daltons of one end of the molecule is on the cytoplasmic side of the membrane. We have also found that undenatured VSV M protein contains a trypsin-resistant core with a molecular weight of 22,000. This region of the M protein is trypsin-resistant regardless of its association with membranes.  相似文献   

16.
This study demonstrates that the glycoprotein of vesicular stomatitis virus clusters in the plasma membrane of infected Chinese hamster lung cells during morphogenesis and suggests that viral nucleocapsids are required for this clustering. A mutant virus (ts E-1) which is temperature sensitive for the synthesis of viral nucleocapsids but not viral membrane proteins was used. The surface distribution of the viral glycoprotein in cells infected by this virus was determined by a specific indirect immunoferritin stain. Early in infection at permissive temperatures, the glycoprotein was randomly distributed on membrane ghosts. Later, clusters of ferritin the size and shape of virus particles were seen. In contrast, ghosts prepared from virus-infected cells maintained at a restrictive temperature always had a random distribution of viral glycoprotein.  相似文献   

17.
The role of glycosylation in the maturation of the vesicular stomatitis virus (VSV) glycoprotein was studied by use of the antibiotic tunicamycin. Tunicamycin-treated VSV-infected cells synthesize an unglycosylated form of the VSV glycoprotein (R. Leavitt, S. Schlesinger, and S. Kornfeld, J. Virol. 21:375--385, 1977). We have found that tunicamycin has no effect on the attachment of the glycoprotein to intracellular membranes or on the transport of protein to the lumen of the endoplasmic reticulum. However, tunicamycin prevented the migration of the glycoprotein from the rough endoplasmic reticulum to smooth intracellular membranes.  相似文献   

18.
Antigenic variants of vesicular stomatitis virus (VSV) serotypes New Jersey and Indiana (VSV-NJ, VSV-Ind) were selected by using a panel of monoclonal antibodies (MAb) specific for the major surface glycoprotein (G-protein). The reactivity of antigenic variants with the panel of MAb confirmed observations made by competitive binding assays that four distinct antigenic sites (A-D)NJ on the VSV-NJ G-protein and four partially overlapping sites (A, B1, B2, C)Ind on the VSV-Ind G-protein are involved in virus neutralization. Furthermore, subregions within the A epitopes of both serotypes were detected by variant analysis. The frequency of variation at most epitopes was 1 in 10(5) for VSV-NJ and 1 in 10(6) for VSV-Ind. The A3 and C determinants of VSV-Ind, however, defined by MAb that exhibited overlap in binding to other epitopes, appeared to be relatively invariant. Multiple mutations may be necessary to abolish antibody binding at these sites. Overlap of the C group of anti-VSV-Ind MAb with the A epitopes was assigned to the A2 subregion, because variants selected with A2 MAb show reduced binding of C MAb. Heterogeneous antisera from a primary immune response could detect differences in reactivity between variants at the A epitopes and wild-type VSV-NJ or VSV-Ind, suggesting the A epitope is immunodominant. Hyperimmune sera could detect a small difference between ANJ and BNJ variants compared to wild-type VSV-NJ, but could not distinguish between VSV-Ind variants and wild-type VSV-Ind.  相似文献   

19.
The kinetics of the incorporation of the proteins of vesicular stomatitis virus into the HeLa cell plasma membrane have been studied. The virus M and NS proteins become associated with the plasma membrane very rapidly (< 5 min) while the glycoprotein G shows a lag of about 20 minutes. A similar lag is observed for the incorporation of the G protein into released virus. By pulse-chase experiments the transit time for the G protein from the site of completion to the plasma membrane was also calculated to be about 20 minutes although not all of the G protein could be chased into the plasma membranes.  相似文献   

20.
Extreme heterogeneity in populations of vesicular stomatitis virus.   总被引:19,自引:12,他引:7       下载免费PDF全文
Vesicular stomatitis virus (VSV) sequence evolution and population heterogeneity were examined by T1 oligonucleotide mapping. Individual clones isolated from clonal pools of wild-type Indiana serotype VSV displayed identical T1 maps. This was observed even after one passage at high concentrations of the potent viral mutagen 5-fluorouracil. Under low-multiplicity passage conditions, the consensus T1 fingerprint of this virus remained unchanged after 523 passages. Interestingly, however, individual clones from this population (passage 523) differed significantly from each other and from consensus sequence. When virus population equilibria were disrupted by high-multiplicity passage (in which defective interfering particle interference is maximized) or passage in the presence of mutagenic levels of 5-fluorouracil, rapid consensus sequence evolution occurred and extreme population heterogeneity was observed (with some members of these population differing from others at hundreds of genome positions). A limited sampling of clones at one stage during high-multiplicity passages suggested the presence of at least several distinct master sequences, the related subpopulations of which exhibit at least transient competitive fitness within the total virus population (M. Eigen and C.K. Biebricher, p. 211-245, in E. Domingo, J.J. Holland, P. Ahlquist, ed., RNA Genetics, vol. 3, 1988). These studies further demonstrate the important role of selective pressure in determining the genetic composition of RNA virus populations. This is true under equilibrium conditions in which little consensus sequence evolution is observed owing to stabilizing selection as well as under conditions in which selective pressure is driving rapid RNA virus genome evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号