首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports the application of differential phase surface plasmon resonance (SPR) imaging in two-dimensional (2D) protein biosensor arrays. Our phase imaging approach offers a distinct advantage over the conventional angular SPR technique in terms of utilization efficiency of optical sensor elements in the imaging device. In the angular approach, each biosensor site in the biosensor array requires a linear array of optical detector elements to locate the SPR angular dip. The maximum biosensor density that a two-dimensional imaging device can offer is a one-dimensional SPR biosensor array. On the other hand, the phase-sensitive SPR approach captures data in the time domain instead of the spatial domain. It is possible that each pixel in the captured interferogram represents one sensor site, thus offering high-density two-dimensional biosensor arrays. In addition, our differential phase approach improves detection resolution through removing common-mode disturbances. Experimental results demonstrate a system resolution of 8.8 x 10(-7)RIU (refractive index unit). Real-time monitoring of bovine serum albumin (BSA)/anti-BSA binding interactions at various concentration levels was achieved using a biosensor array. The detection limit was 0.77 microg/ml. The reported two-dimensional SPR biosensor array offers a real-time and non-labeling detection tool for high-throughput protein array analysis. It may find promising applications in protein therapeutics, drug screening and clinical diagnostics.  相似文献   

2.
We have optimized surface plasmon resonance (SPR) biosensor technology for a rapid, direct, and low-consumption label-free multianalyte screening of synthetic oligonucleotides (ONs) with modified internucleotide linkages potentially applicable in antisense therapy. Monitoring of the ONs hybridization is based on the formation of complex between the natural oligonucleotide probe immobilized on the sensor surface and the ON in solution in contact with the sensor surface. An immobilization chemistry utilizing the streptavidin-biotin interaction was employed to obtain desired ligand density and high hybridization efficiency. It was demonstrated that the sensor is capable of detecting complementary 23-mer ONs in concentrations as low as 0.1 nM with high specificity and reproducibility.  相似文献   

3.
In this paper the development of the first direct surface plasmon resonance (SPR) immunoassay for the detection of benzoylecgonine (BZE) is described. Immunosensor chips consisting of a high affinity monoclonal anti-BZE-antibody (anti-BZE-Ab) immobilized at high density to a sensor chip were prepared. First, BZE detection in Hepes buffer was achieved by direct, real time monitoring of the binding between BZE in solution and the surface bound antibody. The detection protocol was based on calibration curves obtained from reaction rate data and end point data analysis of sensorgrams registered after injection of a series of known BZE concentrations over the chips. Moreover, immunosensor accuracy, reproducibility, stability and robustness were tested to demonstrate their good performance as reusable devices. The immunosensor was used for BZE detection in oral fluid (OF) showing that, within 180 s, our immunoassay detects BZE concentrations as low as 4 μg/L in filtered OF-buffer (1:4) samples. This value is remarkably lower than current cut off levels established by the Substance Abuse and Mental Health Services Administration. These results manifest the potential use of this direct SPR immunoassay for the in situ sensitive detection of recent cocaine abuse, of utility in roadside drug OF testing. Moreover, it exemplifies the high potential of direct SPR immunoassays for the rapid, sensitive detection of small molecules in contrast with the more established indirect methods.  相似文献   

4.
Liu  Na  Wang  Shutao  Cheng  Qi  Pang  Bo  Lv  Jiangtao 《Plasmonics (Norwell, Mass.)》2021,16(5):1567-1576

In the present work, a novel surface plasmon resonance (SPR) sensor consisting of the nickel (Ni) film with hybrid structure of blue phosphorene (BlueP)/transition metal dichalcogenides (TMDCs) is reported. By optimizing the thickness of Ni layer and BlueP/TMDCs, the maximum sensitivity with 270°/RIU for the Ni-BlueP/WS2 is achieved. Use of BlueP/TMDCs layer facilitates the sensitivity due to its high electron concentration, high mobility, optical, and electronic properties. Compared with the conventional Ni-based SPR sensor, the sensitivity of the proposed one is enhanced up to ~ 60.7%. We hope that the SPR sensor has potential application prospects in chemical detection, medical diagnostic, optical sensing, etc. due to its high sensitivity.

  相似文献   

5.
Surface plasmon resonance (SPR) spectroscopy has been used to study DNA assembly, DNA hybridization, and protein-DNA interactions on two streptavidin (SA) sensor chips. On one chip, SA molecules are immobilized on a biotin-exposed surface, forming an ordered two-dimensional (2D) SA monolayer. The other chip, BIAcore's SA chip, contains SA molecules immobilized within a three-dimensional (3D) carboxylated dextran matrix. Compared to the 2D chip, the 3D SA matrix allows for a slower immobilization rate of biotinylated DNA due to diffusion limitation in the dextran matrix, but with twice the amount of the immobilized DNA due to the greater number of reactive sites, which in turn enables a higher sensitivity for DNA hybridization detection. Interestingly, having a greater DNA probe dispersion in the 3D matrix does not induce a higher DNA hybridization efficiency. In a study of protein binding to immobilized DNA (estrogen receptor to estrogen response elements), aiming at assessing the DNA sequence dependent protein binding behavior, the 2D and 3D chips produce different binding characteristics. On the 2D chip, the protein binding exhibits a better selectivity to the specific sequences, regardless of binding stringency (e.g. salt concentration), whereas on the 3D chip, the liquid handling system needs to be optimized in order to minimize transport limitations and to detect small affinity differences. Through this study we demonstrate that the physicochemical structure of SPR chips affects the apparent binding behaviors of biomolecules. When interpreting SPR binding curves and selecting a sensor chip, these effects should be taken into account.  相似文献   

6.
A simple and rapid continuous-flow immunosensor based on surface plasmon resonance (SPR) has been developed for detection of insulin as low as 1 ng ml-1 (ppb) with a response time of less than 5 min. At first, a heterobifunctional oligo(ethyleneglycol)-dithiocarboxylic acid derivative (OEG-DCA) containing dithiol and carboxyl end groups was used to functionalize the thin Au-film of SPR chip. Insulin was covalently bound to the Au-thiolate monolayer of OEG-DCA for activating the sensor surface to immunoaffinity interactions. An on-line competitive immunosensing principle is examined for detection of insulin, in which the direct affinity binding of anti-insulin antibody to the insulin on sensor surface is examined in the presence and absence of various concentrations of insulin. Immunoreaction of anti-insulin antibody with the sensor surface was optimized with reference to antibody concentration, sample analysis time and flow-rate to provide the desired detection limit and determination range. With the immunosensor developed, the lowest detectable concentration of insulin is 1 ng ml-1 and the determination range covers a wide concentration of 1-300 ng ml-1. The developed OEG-monolayer based sensor chip exhibited high resistance to non-specific adsorption of proteins, and an uninterrupted highly sensitive detection of insulin from insulin-impregnated serum samples has been demonstrated. After an immunoreaction cycle, active sensor surface was regenerated simply by a brief flow of an acidic buffer (glycine.HCl; pH 2.0) for less than 1 min. A same sensor chip was found reusable for more than 25 cycles without an appreciable change in the original sensor activity.  相似文献   

7.
Nitrilotriacetate (NTA)-mediated capture of a histidine-tagged protein is widely used as an easy and simple method to reversibly immobilize the protein onto a sensor chip for surface plasmon resonance (SPR). However, in spite of its advantages, the NTA-capturing strategy is rarely employed for ligand screening experiments using SPR, because it was thought to cause substantial errors in binding responses, due to the inevitable protein dissociation during the monitoring period. In this study, as demonstrated in a ligand screening for the histidine-tagged SH3 domain of the human phosphatidylinositol 3-kinase p85alpha subunit, false responses after adhesion of undesirable compounds to a target protein could be minimized with the NTA strategy, while binding responses of a positive control peptide still stayed within a 1%-deviation against the theoretical binding capacity.  相似文献   

8.
Here we have designed and synthesized ligands that specifically bind with high affinity (K(d) = 53 nM) to the guanine (G)-guanine mismatch, one of four types of single-nucleotide polymorphism (SNP). Detection of the G-G mismatch was performed by a surface plasmon resonance (SPR) assay using a sensor chip carrying the G-G specific ligand on its surface. The accuracy of the G-G mismatch detection by the SPR sensor was demonstrated by a marked SPR response obtained only for the DNA containing the G-G mismatch. DNAs containing G-A and G-T mismatches, as well as a fully matched duplex, produced only a weak response. Furthermore, this assay was found applicable for the detection of SNP existing in PCR amplification products of a 652-nucleotide sequence of the HSP70-2 gene.  相似文献   

9.
A biosensor based on surface plasmon resonance (SPR) is developed for the detection of 2-hydroxybiphenyl (HBP). A monoclonal antibody against HBP (abbreviated hereafter as HBP-mAb) is developed and used for the detection of HBP by competitive SPR-based immunoassay and enzyme linked immunosorbent assay (ELISA) methods. A novel HBP-hapten compound, HBP-bovine serum albumin conjugate (HBP-BSA), derived by binding several HBP units with BSA by an aliphatic chain spacer is used in the development of antibody and for the functionalization of immunoprobes. HBP-BSA linked to the Au surface of the SPR sensor chip undergoes inhibitive immunoreaction with HBP-mAb in the presence of free HBP. The SPR-based immunoassay provides a rapid determination (response time: approximately 20 min) of the concentration of HBP in the range of 0.1-1000 ppb (ng/ml). Regeneration of the sensor chip is gained by treating the antibody-anchored SPR sensor chip with a pepsin solution (100 ppm (microg/ml); pH 2.0) for few minutes. The SPR sensor chip is reusable for the detection of HBP for more than 20 cycles with average loss of 0.35% reactivity per regeneration step. HBP concentration is determined as low as 0.1 and 3 ppb using the SPR sensor and ELISA measurements, respectively. The developed SPR sensor for HBP is free from interference by coexisting benzo[a]pyrene (BaP), 2,4-dichlorophenoxyacetic acid (2,4-D) and benz[a]anthracene; SPR angle shift obtained to the flow of HBP is almost same irrespective to the presence or absence of a same concentration of these carcinogenic polycyclic aromatic hydrocarbons together. The SPR sensor for HBP is proved to be applicable in simultaneous detection of HBP and BaP in parallel with another SPR sensor for BaP.  相似文献   

10.
A surface plasmon resonance (SPR)-immunosensor for detection of benzo[a]pyrene (BaP) is developed by using a model BaP-hapten compound, BaP-bovine serum albumin conjugate (BaP-BSA), and an anti-BaP-BSA monoclonal antibody. BaP-BSA conjugate is immobilized on a gold thin-film sensor chip by means of simple physical adsorption. The number of BaP-hapten units in BaP-BSA conjugate is estimated to be 28 from the difference in molecular weight (MW) between BaP-BSA conjugate and BSA based on the results of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) measurement. Anti-BaP-BSA antibody on contact with the BaP-BSA conjugate immobilized sensor chip causes an increase in the incident angle of the sensor chip. Binding of anti-BaP-BSA antibody with surface-immobilized BaP-BSA conjugate is inhibited by the presence of BaP in analyte solution, because of the inhibition effect of BaP. The SPR immunosensor for BaP functioning with the indirect competitive immunoreaction of anti-BaP-BSA antibody between the analyte (BaP) in testing solution and the BaP-BSA conjugate immobilized on the sensor chip provides a rapid determination (response time: ca. 15 min) of BaP in the concentration range of 0.01-1000 ppb. The antibody anchored to the sensor chip by antigen-antibody binding is removed on treatment with a pepsin solution (pH 2.0) for few minutes. The SPR sensor chip is found to be reusable for more than 20 times with a little decrease (<7%) in the sensor response. Detection of BaP by direct competitive immunoreactions is also carried out by enzyme-linked immunosorbent assay (ELISA). The concentration of BaP could be determined as low as 0.01 ppb and 2 ppb using the SPR sensor and the ELISA method, respectively. The SPR sensor is found to detect BaP selectively in the presence of 2-hydroxybiphenyl (HBP); the incident angle shift of the SPR sensor for BaP is found to be same irrespective to the presence or the absence of a same concentration (as much as 30 ppb) of HBP together.  相似文献   

11.
Surface plasmon resonance (SPR) biosensors offer the capability for continuous real-time monitoring. The commercial instruments available have been large in size, expensive, and not amenable to field applications. We report here an SPR sensor system based on a prototype two-channel system similar to the single channel Spreeta devices. This system is an ideal candidate for field use. The two-channel design provides a reference channel to compensate for bulk refractive index (RI), non-specific binding and temperature variations. The SPR software includes a calibration function that normalizes the response from both channels, thus enabling accurate referencing. In addition, a temperature-controlled enclosure utilizing a thermo-electric module based on the Peltier effect provides the temperature stability necessary for accurate measurements of RI. The complete SPR sensor system can be powered by a 12V battery. Pre-functionalized, disposable, gold-coated thin glass slides provide easily renewable sensor elements for the system. Staphylococcus aureus enterotoxin B (SEB), a small protein toxin was directly detectable at sub-nanomolar levels and with amplification at femtomolar levels. A regeneration procedure for the sensor surface allowed for over 60 direct detection cycles in a 1-month period.  相似文献   

12.
A novel phage library has been prepared using the Escherichia coli genome digested with three restriction enzymes. The resulting DNA fragments were ligated to the expression vector pCANTAB5 to obtain the library of recombinant M13 phages displaying relatively long exogenous peptides. The library was screened to isolate recombinant phages with high affinity to alkaline phosphatase (AP) from calf intestine. After four rounds of panning three phages (AP1, AP2 and AP3) were shown to have specific binding properties toward AP by enzyme-linked immunosorbent assay. The phages were further characterized by surface plasmon resonance (SPR). Among the three phages AP3 bound the AP-immobilized sensor chip most and caused the highest resonant angle shift. The sensor response decreased with the decrease of the concentration of AP3 added. Furthermore, displacement of AP3 from the AP-immobilized sensor chip was observed upon injection of AP solution to the SPR system, whereas injection of bovine serum albumin solution led to the great increase of the sensor response. This result indicates the specific binding of AP3 to AP.  相似文献   

13.
This paper describes the direct label-free detection of antibodies against the Epstein-Barr virus (anti-EBNA) using a surface plasmon resonance (SPR) biosensor. The antibody detection was performed using the immunoreaction between anti-EBNA and a respective synthetic peptide (EBNA-1), which was conjugated with bovine serum albumin (BSA-EBNA) and immobilized on the sensor surface. Three immobilization chemistries for the attachment of BSA-EBNA were investigated to optimize ligand density and minimize loss of EBNA-1 immunoreactivity. The developed SPR biosensor functionalized with the optimal immobilization method was calibrated and characterized in terms of detection limit, reproducibility, regenerability and storability. It was demonstrated that the sensor is capable of detecting concentrations of anti-EBNA as low as 0.2 ng/ml (approximately 1 pM) both in buffer and 1% human serum and can be stored and regenerated for repeated use.  相似文献   

14.
In this paper we describe the use of a commercial surface plasmon resonance (SPR) imaging instrument for monitoring the binding of biomolecules on user-defined regions of interest of a microarray. By monitoring the angle shift of the SPR-dip using a continuous angle-scanning mode instead of monitoring the change in reflectivity at a fixed angle, a linear relationship with respect to the mass density change on the surface will remain over a wide dynamic angle range of 8 degrees. Peptides (2.4 kDa) and proteins (150 kDa) were both spotted on the same sensor chip to illustrate that both, low and high molecular weight ligands with initial large differences in off-set SPR angles, can be applied within the same experiment. By using a fluorescently labeled antibody, SPR results can be confirmed by means of fluorescence microscopy after completion of a SPR experiment. SPR imaging in angle-scanning operation provides sensitive, accurate, and label-free detection of analyte binding on microarrays containing different molecular weight ligands.  相似文献   

15.
Du  Bobo  Yang  Yuan  Zhang  Yang  Yang  Dexing 《Plasmonics (Norwell, Mass.)》2019,14(2):457-463

In this article, a surface plasmon resonance (SPR) biosensor based on D-typed optical fiber coated by Al2O3/Ag/Al2O3 film is investigated numerically. Resonance in near infrared with an optimized architecture is achieved. Refractive index sensitivity of 6558 nm/RIU (refractive index unit) and detection limit of 1.5 × 10−6 RIU, corresponding to 0.4357 nm/μM and detection limit of 23 nM in BSA (bovine serum albumin) concentration sensing, are obtained. The analysis of the performance of the sensor in gaseous sensing indicates that this proposed SPR sensor is much suitable for label-free biosensing in aqueous media.

  相似文献   

16.
Traditionally, the integration of sensing gel layers in surface plasmon resonance (SPR) is achieved via "bulk" methods, such as precipitation, spin-coating or in-situ polymerization onto the total surface of the sensor chip, combined with covalent attachment of the antibody or receptor to the gel surface. This is wasteful in terms of materials as the sensing only occurs at the point of resonance interrogated by the laser. By isolating the sensing materials (antibodies, enzymes, aptamers, polymers, MIPs, etc.) to this exact spot a more efficient use of these recognition elements will be achieved. Here we present a method for the in-situ formation of polymers, using the energy of the evanescent wave field on the surface of an SPR device, specifically localized at the point of interrogation. Using the photo-initiator couple of methylene blue (sensitizing dye) and sodium p-toluenesulfinate (reducing agent) we polymerized a mixture of N,N-methylene-bis-acrylamide and methacrylic acid in water at the focal point of SPR. No polymerization was seen in solution or at any other sites on the sensor surface. Varying parameters such as monomer concentration and exposure time allowed precise control over the polymer thickness (from 20-200 nm). Standard coupling with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide was used for the immobilization of protein G which was used to bind IgG in a typical biosensor format. This model system demonstrated the characteristic performance for this type of immunosensor, validating our deposition method.  相似文献   

17.
This paper describes the use of a cuvette-based surface plasmon resonance (SPR) instrument to measure biocatalyzed precipitation reactions. Enzyme-modified SPR sensor disk forms the base of a cuvette, in which the substrate solution is added with stirring. The determination of the substrate concentration relies on the measurement of SPR angle shift (Deltatheta(SPR)) induced by the deposition of the insoluble products without involving in any electrochemical reactions. As examples, horseradish peroxidase (HRP)-modified monoenzyme SPR sensor and HRP-glucose oxidase bienzyme-layered sensor are created to determine hydrogen peroxide and glucose via the catalyzed oxidation of 4-chloro-1-naphthol (4-CN). The deposition of the oxidized 4-CN-insoluble products leads to SPR angle shifts, which are linear to H(2)O(2) and glucose in the concentration ranges of 0.067-7.24 x 10(-5) and 0.7-8.3 x 10(-4) mM, respectively. The SPR sensitivities are greater than those of nonelectrochemical quartz crystal microbalance (QCM) (the parallel results in this study) and compare favorable with those of electrochemical QCM and electrochemical SPR methods. This study opens the field for enhanced SPR measurements by using biocatalyzed precipitation as a signal amplification method.  相似文献   

18.
In this paper, a new simple approach for sensitivity optimization in surface plasmon resonance (SPR) chemosensors based on colorimetric ligands is presented. A new design of SPR sensor with tunable analytical wavelength (lambda(SPR)) was constructed for this purpose, to perform studies on the ligand absorbance spectra related sensitivity enhancement. Unlike commercial SPR sensors which operate at one lambda(SPR), the new device can be used for sensitivity analysis at selected lambda(SPR) in the range 550-750 nm, offering the possibility to identify the highest sensitivity lambda(SPR) in regard to the spectral changes of the selected ligand. Measurements can be easily done in ligand bulk solutions without immobilization steps. Sensitivity enhancement analysis and optimization of lambda(SPR) on chromogenic reagents with hypsochromic shift in their absorption spectra are demonstrated in this contribution. Optimal selection of analytical wavelength, set at the absorbance peak of chromogenic reagent Eriochrome Black T (EBT) was observed to result in up to two times increased SPR sensitivity to Cd(2+) compared to wavelengths selected in other parts of the ligand absorbance spectra, with a limit of detection (LOD) 0.2 ppm. The sensitivity enhancement at optimal lambda(SPR) was observed to be related to increased refractive index (n), drop in extinction coefficient (alpha) and simultaneous hypsochromic shift of the EBT absorbance spectra causing the lambda(SPR) to match the absorbance peak shoulder.  相似文献   

19.
Surface plasmon resonance (SPR) was used to monitor the interaction of alphaGal-antibodies from human blood group O serum with linear blood group B-saccharides, employing Galalpha1-3Galbeta1-4GlcNAc-HSA immobilised on a sensor chip surface. Strong binding of antibodies, as evident from high relative response values exceeding 200 RU, was observed. The interaction was influenced by the nature of the oligosaccharide that was added to the antibody sample prior to measurement. For example, the addition of either of the linear B-saccharides Galalpha1-3Gal and Galalpha1-3Galbeta1-4GlcNAc produced complete inhibition of antibody binding to the sensor surface, whereas the addition of the related but non-specific blood group A saccharide, GalNAcalpha1-3(Fucalpha1-2)Gal, had little effect on binding. The technique was used for the rapid monitoring of the removal of alphaGal-antibodies from human serum by affinity columns, which contained either Galalpha1-3Gal or Galalpha1-3Galbeta1-4GlcNAc as ligand. The above carbohydrates are currently evaluated as inhibitors or as affinity ligands, in the prevention of hyperacute rejection during xenotransplantation.  相似文献   

20.

Background

G-quadruplexes (G4s) are nucleic acids secondary structures formed in guanine-rich sequences. Anti-G4 antibodies represent a tool for the direct investigation of G4s in cells. Surface Plasmon Resonance (SPR) is a highly sensitive technology, suitable for assessing the affinity between biomolecules. We here aimed at improving the orientation of an anti-G4 antibody on the SPR sensor chip to optimize detection of binding antigens.

Methods

SPR was employed to characterize the anti-G4 antibody interaction with G4 and non-G4 oligonucleotides. Dextran-functionalized sensor chips were used both in covalent coupling and capturing procedures.

Results

The use of two leading molecule for orienting the antibody of interest allowed to improve its activity from completely non-functional to 65% active. The specificity of the anti-G4 antobody for G4 structures could thus be assessed with high sensitivity and reliability.

Conclusions

Optimization of the immobilization protocol for SPR biosensing, allowed us to determine the anti-G4 antibody affinity and specificity for G4 antigens with higher sensitivity with respect to other in vitro assays such as ELISA. Anti-G4 antibody specificity is a fundamental assumption for the future utilization of this kind of antibodies for monitoring G4s directly in cells.

General significance

The heterogeneous orientation of amine-coupling immobilized ligands is a general problem that often leads to partial or complete inactivation of the molecules. Here we describe a new strategy for improving ligand orientation: driving it from two sides. This principle can be virtually applied to every molecule that loses its activity or is poorly immobilized after standard coupling to the SPR chip surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号