首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theoretical estimation of contribution of the electrostatic interactions to pre-orientation of ribonuclease subunits in process of complex formation was carried out. The subunit was considered as a multipole consisting of partial charges of all atoms of the molecule. The object of investigation was a system of two subunits with their centers of gravity fixed at some distance in vacuum. It was proposed that each subunit independently could rotate freely around its fixed center of gravity. The relative orientation states of the subunits in such system were searched at which the system has electrostatic energy minima (equilibrium states). In first approximation the equilibrium states were found using especially designed approximate method for electrostatic interaction energy calculation, which permitted to calculate and compare the energies of the system in 24(5) (approximately 8 10(6)) states with different mutual orientation of subunits. The angular coordinates of the found equilibrium states were further specified by calculation with gradient sliding method. Angular coordinates of the equilibrium states and the shapes of energy surface cuts along each coordinate angle were calculated also for the intersubunits distances diminished down to 50 angstroms. The dispersions of the angular coordinates of equilibrium states caused by heat movement (at T=300 degrees) and their changes with shortening the distance between centers of gravity of subunits were estimated. Mutual orientation of subunits in the equilibrium states of the system under consideration was found to be similar to their mutual orientations in complex. Also it was found that relaxation time of the system, caused by electrostatic interaction of subunits, after removing the system from an equilibrium state, is much less in vacuum than the mean time between their Brownian collisions at room temperature. It follows from these results that in the case of ribonuclease in vacuum the electrostatic interactions of its subunits must be strong enough to realize the effective pre-orientation of subunits during their Brownian approach from distances of the order 100 angstroms. Preliminary consideration taking into account the effect of surrounding water molecules on the electrostatic interactions of ribonuclease subunits showed that weakening of the interaction must be much less than in the case when one uses in its calculation the macroscopic dielectric permeability value equal to 80. So the results obtained for vacuum seem to be true for water solution also. More strict theoretical analysis of this problem will be carried out in the following publication.  相似文献   

2.
《Biophysical journal》2021,120(15):2998-3007
Protein-protein interactions underlie many critical biology functions, such as cellular signaling and gene expression, in which electrostatic interactions can play a critical role in mediating the specificity and stability of protein complexes. A substantial portion of proteins are intrinsically disordered, and the influences of structural disorder on binding kinetics and thermodynamics have been widely investigated. However, whether the effect of electrostatic steering depends on structural disorder remains unexplored. In this work, we addressed the consequence of introducing intrinsic disorder in the electrostatic steering of the E3/Im3 complex using molecular dynamics simulation. Our results recapitulated the experimental observations that the responses of stability and kinetics to salt concentration for the ordered E3/Im3 complex were larger than those for the disordered E3/Im3 complex. Mechanistic analysis revealed that the native contact interactions involved in the encounter state and the transition state were essentially identical for both ordered and disordered E3. Therefore, the observed difference in electrostatic steering between ordered E3 and disordered E3 may result from their difference in conformation rather than their difference in binding mechanism. Because charged residues are frequently involved in protein-protein interactions, our results suggest that increasing structural disorder is expected to generally modulate the effect of electrostatic steering.  相似文献   

3.

Background

Prediction and analysis of protein-protein interactions (PPI) and specifically types of PPIs is an important problem in life science research because of the fundamental roles of PPIs in many biological processes in living cells. In addition, electrostatic interactions are important in understanding inter-molecular interactions, since they are long-range, and because of their influence in charged molecules. This is the main motivation for using electrostatic energy for prediction of PPI types.

Results

We propose a prediction model to analyze protein interaction types, namely obligate and non-obligate, using electrostatic energy values as properties. The prediction approach uses electrostatic energy values for pairs of atoms and amino acids present in interfaces where the interaction occurs. The main features of the complexes are found and then the prediction is performed via several state-of-the-art classification techniques, including linear dimensionality reduction (LDR), support vector machine (SVM), naive Bayes (NB) and k-nearest neighbor (k-NN). For an in-depth analysis of classification results, some other experiments were performed by varying the distance cutoffs between atom pairs of interacting chains, ranging from 5Å to 13Å. Moreover, several feature selection algorithms including gain ratio (GR), information gain (IG), chi-square (Chi2) and minimum redundancy maximum relevance (mRMR) are applied on the available datasets to obtain more discriminative pairs of atom types and amino acid types as features for prediction.

Conclusions

Our results on two well-known datasets of obligate and non-obligate complexes confirm that electrostatic energy is an important property to predict obligate and non-obligate protein interaction types on the basis of all the experimental results, achieving accuracies of over 98%. Furthermore, a comparison performed by changing the distance cutoff demonstrates that the best values for prediction of PPI types using electrostatic energy range from 9Å to 12Å, which show that electrostatic interactions are long-range and cover a broader area in the interface. In addition, the results on using feature selection before prediction confirm that (a) a few pairs of atoms and amino acids are appropriate for prediction, and (b) prediction performance can be improved by eliminating irrelevant and noisy features and selecting the most discriminative ones.
  相似文献   

4.
Here, the methods of continuum electrostatics are used to investigate the contribution of electrostatic interactions to the binding of four protein-protein complexes; barnase-barstar, human growth hormone and its receptor, subtype N9 influenza virus neuraminidase and the NC41 antibody, the Ras binding domain (RBD) of kinase cRaf and a Ras homologue Rap1A. In two of the four complexes electrostatics are found to strongly oppose binding (hormone-receptor and neuraminidase-antibody complexes), in one case the net effect is close to zero (barnase-barstar) and in one case electrostatics provides a significant driving force favoring binding (RBD-Rap1A). In order to help understand the wide range of electrostatic contributions that were calculated, the electrostatic free energy was partitioned into contributions of individual charged and polar residues, salt bridges and networks involving salt bridges and hydrogen bonds. Although there is no one structural feature that accounts for the differences between the four interfaces, the extent to which the desolvation of buried charges is compensated by the formation of hydrogen bonds and ion pairs appears to be an important factor. Structural features that are correlated with contribution of an individual residue to stability are also discussed. These include partial burial of a charged group in the free monomer, the formation of networks involving charged and polar amino acids, and the formation of partially exposed ion-pairs. The total electrostatic contribution to binding is found to be inversely correlated with buried total and non-polar surface area. This suggests that different interfaces can be designed to exploit electrostatic and hydrophobic forces in very different ways.  相似文献   

5.
The positions of cations in x-ray structures are modulated by sequence, conformation, and ligand interactions. The goal here is to use x-ray diffraction to help resolve structural and thermodynamic roles of specifically localized cations in DNA-anthracycline complexes. We describe a 1.34 A resolution structure of a CGATCG(2)-adriamycin(2) complex obtained from crystals grown in the presence of thallium (I) ions. Tl(+) can substitute for biological monovalent cations, but is readily detected by distinctive x-ray scattering, obviating analysis of subtle differences in coordination geometry and x-ray scattering of water, sodium, potassium, and ammonium. Six localized Tl(+) sites are observable adjacent to each CGATCG(2)-adriamycin(2) complex. Each of these localized monovalent cations are found within the G-tract major groove of the intercalated DNA-drug complex. Adriamycin appears to be designed by nature to interact favorably with the electrostatic landscape of DNA, and to conserve the distribution of localized cationic charge. Localized inorganic cations in the major groove are conserved upon binding of adriamycin. In the minor groove, inorganic cations are substituted by a cationic functional group of adriamycin. This partitioning of cationic charge by adriamycin into the major groove of CG base pairs and the minor groove of AT base pairs may be a general feature of sequence-specific DNA-small molecule interactions and a potentially useful important factor in ligand design.  相似文献   

6.
Modulations of protein-protein interactions are a key step in regulating protein function, especially in networks. Modulators of these interactions are supposed to be candidates for the development of novel drugs. Here, we describe the role of the small, polycationic and highly abundant natural polyamines that could efficiently bind to charged spots at protein interfaces as modulators of such protein-protein interactions. Using the mitochondrial cytochrome P45011A1 (CYP11A1) electron transfer system as a model, we have analyzed the capability of putrescine, spermidine, and spermine at physiologically relevant concentrations to affect the protein-protein interactions between adrenodoxin reductase (AdR), adrenodoxin (Adx), and CYP11A1. The actions of polyamines on the individual components, on their association/dissociation, on electron transfer, and on substrate conversion were examined. These studies revealed modulating effects of polyamines on distinct interactions and on the entire system in a complex way. Modulation via changed protein-protein interactions appeared plausible from docking experiments that suggested favourable high-affinity binding sites of polyamines (spermine > spermidine > putrescine) at the AdR-Adx interface. Our findings imply for the first time that small endogenous compounds are capable of interfering with distinct components of transient protein complexes and might control protein functions by modulating electrostatic protein-protein interactions.  相似文献   

7.
8.
Summary The structure of model lipoprotein complexes, extracted from an aqueous phase into isooctane, has been investigated using a fluorescence technique. The technique is based on the transfer of excitation energy from one protein (or DNS-labelled protein) to a second protein containing a fluorescence quencher, such as a haem group. The results obtained with model complexes in isooctane are consistent with a structure comprised of an inner protein core, and an outer layer of phospholipids.  相似文献   

9.
The notion that all protein functions are determined through macromolecular interactions is the driving force behind current efforts that aim to solve the structures of all cellular complexes. Recent findings, however, demonstrate a significant amount of structural disorder or polymorphism in protein complexes, a phenomenon that has been largely overlooked thus far. It is our view that such disorder can be classified into four mechanistic categories, covering a continuous spectrum of structural states from static to dynamic disorder and from segmental to full disorder. To emphasize its generality and importance, we suggest a generic term, 'fuzziness', for this phenomenon. Given the crucial role of protein disorder in protein-protein interactions and in regulatory processes, we envision that fuzziness will become integral to understanding the interactome.  相似文献   

10.
The energy of binding between proteins may be seen as the sum of the contributions of the individual amino acid residues. These contributions are additive when the binding energy, due to different amino acid residues, is independent of the interactions between amino acids in the same polypeptide chain. A measure of non-additivity is the coupling free energy. In this communication it is shown that: (1) the coupling free energy is the sum of intramolecular and intermolecular contributions; and (2), when additivity exists, experimentally determined values for the free energy of transfer of amino acids from water to the hydrophobic protein-protein interface are a very good approximation of their contribution to the energy of binding. Additivity cycles can be useful in determining the precise conditions where this approximation holds.  相似文献   

11.
12.
13.
Diversity of protein-protein interactions   总被引:4,自引:0,他引:4  
Nooren IM  Thornton JM 《The EMBO journal》2003,22(14):3486-3492
In this review, we discuss the structural and functional diversity of protein-protein interactions (PPIs) based primarily on protein families for which three-dimensional structural data are available. PPIs play diverse roles in biology and differ based on the composition, affinity and whether the association is permanent or transient. In vivo, the protomer's localization, concentration and local environment can affect the interaction between protomers and are vital to control the composition and oligomeric state of protein complexes. Since a change in quaternary state is often coupled with biological function or activity, transient PPIs are important biological regulators. Structural characteristics of different types of PPIs are discussed and related to their physiological function, specificity and evolution.  相似文献   

14.
In the postgenomic era, one of the most interesting and important challenges is to understand protein interactions on a large scale. The physical interactions between protein domains are fundamental to the workings of a cell: in multi-domain polypeptide chains, in multi-subunit proteins and in transient complexes between proteins that also exist independently. Thus experimental investigation of protein-protein interactions has been extensive, including recent large-scale screens using mass spectrometry. The role of computational research on protein-protein interactions encompasses not only prediction, but also understanding the nature of the interactions and their three-dimensional structures. I will discuss properties such as sequence conservation and co-regulation of genes and proteins involved in different types of physical interactions. Given that all proteins consist of their evolutionary units, the domains, all interactions occur between these domains. The interactions between domains belonging to different protein families will be the second topic of my talk.  相似文献   

15.
Crowley PB  Golovin A 《Proteins》2005,59(2):231-239
Arginine is an abundant residue in protein-protein interfaces. The importance of this residue relates to the versatility of its side chain in intermolecular interactions. Different classes of protein-protein interfaces were surveyed for cation-pi interactions. Approximately half of the protein complexes and one-third of the homodimers analyzed were found to contain at least one intermolecular cation-pi pair. Interactions between arginine and tyrosine were found to be the most abundant. The electrostatic interaction energy was calculated to be approximately 3 kcal/mol, on average. A distance-based search of guanidinium:aromatic interactions was also performed using the Macromolecular Structure Database (MSD). This search revealed that half of the guanidinium:aromatic pairs pack in a coplanar manner. Furthermore, it was found that the cationic group of the cation-pi pair is frequently involved in intermolecular hydrogen bonds. In this manner the arginine side chain can participate in multiple interactions, providing a mechanism for inter-protein specificity. Thus, the cation-pi interaction is established as an important contributor to protein-protein interfaces.  相似文献   

16.
Protein-protein interactions are crucial processes in virtually all cellular events. The heterohexameric Tim9-Tim10 complex of the mitochondrial intermembrane space plays an important role during import of mitochondrial membrane proteins. It consists of three molecules of each subunit arranged alternately in a ring-shaped structure. While the individual protein Tim9 forms a homodimer, Tim10 is a monomer. Further to our previous investigation on the complex formation pathway, in this study, the assembly mechanism of Tim9-Tim10 was investigated using a stopped-flow technique coupled with mutagenesis. We show that while the initial velocity of the assembly depends on Tim9 concentration linearly, it presents a sigmoid curve on Tim10. In addition, the overall rate of assembly depends on the pH level in a bell-shaped profile, and two pKa values that are in good agreement with the respective isoelectric points of Tim9 and Tim10 were determined. Using a Tim10F70W mutant, we were able to show that there was clear salt concentration dependence in the rate of assembly at the early stages. Taken together, the results of pH and salt concentration dependence indicate that electrostatic interactions are important and provide an initial driving force for the complex formation. Thus, this study not only demonstrates that allosteric and electrostatic interactions are two key regulators for the assembly of the Tim9-Tim10 complex but also has important implications for our understanding of how proteins interact with their partners.  相似文献   

17.
18.
Summary Interactions between proteins are extremely variable. However, in the dimeric proteins comprised of regular motifs, interface interactions are similar to those that stabilize monomers. Additional stability is gained by converting loops within motifs or domains to linkers across interfaces. In multi-domain proteins, interactions can be greatly effected by the conformation of linkers between domains. Complex association of subunits, involving higher rotational symmetry or cubic symmetry, frequently involves motif sharing across interfaces.  相似文献   

19.
Although a single binary functional complex between cytochrome P450 (P450 or CYP for a specific isoform) and cytochrome P450 reductase (CPR) has been generally accepted in the literature, this simple model failed to explain the experimentally observed catalytic activity of recombinant CYP2E1 in dependence on the total concentration of the added CPR-K56Q mutant. Our rejection of the simplest 1:1 binding model was based on two independent lines of experimental evidence. First, under the assumption of the 1:1 binding model, separate analyses of titration curves obtained while varying either P450 or CPR concentrations individually produced contradictory results. Second, an asymmetric Job plot suggested the existence of higher order molecular complexes. To identify the most probable complexation mechanism, we generated a comprehensive data set where the concentrations of both P450 and P450 were varied simultaneously, rather than one at a time. The resulting two-dimensional data were globally fit to 32 candidate mechanistic models, involving the formation of binary, ternary, and quaternary P450.CPR complexes, in the absence or presence or P450 and CPR homodimers. Of the 32 candidate models (mechanisms), two models were approximately equally successful in explaining our experimental data. The first plausible model involves the binary complex P450.CPR, the quaternary complex (P450)2.(CPR)2, and the homodimer (P450)2. The second plausible model additionally involves a weakly bound ternary complex (P450)2.CPR. Importantly, only the binary complex P450.CPR seems catalytically active in either of the two most probable mechanisms.  相似文献   

20.
Gene silencing in the budding yeast Saccharomyces cerevisiae requires the enzymatic activity of the Sir2 protein, a highly conserved NAD-dependent deacetylase. In order to study the activity of native Sir2, we purified and characterized two budding yeast Sir2 complexes: the Sir2/Sir4 complex, which mediates silencing at mating-type loci and at telomeres, and the RENT complex, which mediates silencing at the ribosomal DNA repeats. Analyses of the protein compositions of these complexes confirmed previously described interactions. We show that the assembly of Sir2 into native silencing complexes does not alter its selectivity for acetylated substrates, nor does it allow the deacetylation of nucleosomal histones. The inability of Sir2 complexes to deacetylate nucleosomes suggests that additional factors influence Sir2 activity in vivo. In contrast, Sir2 complexes show significant enhancement in their affinities for acetylated substrates and their sensitivities to the physiological inhibitor nicotinamide relative to recombinant Sir2. Reconstitution experiments showed that, for the Sir2/Sir4 complex, these differences stem from the physical interaction of Sir2 with Sir4. Finally, we provide evidence that the different nicotinamide sensitivities of Sir2/Sir4 and RENT in vitro could contribute to locus-specific differences in how Sir2 activity is regulated in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号