首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of endothermy is a puzzling phenomenon in the evolution of vertebrates. To address this issue several explicative models have been proposed. The main models proposed for the origin of endothermy are the aerobic capacity, the thermoregulatory and the parental care models. Our main proposal is that to compare the alternative models, a critical aspect is to determine how strongly natural selection was influenced by body temperature, and basal and maximum metabolic rates during the evolution of endothermy. We evaluate these relationships in the context of three main hypotheses aimed at explaining the evolution of endothermy, namely the parental care hypothesis and two hypotheses related to the thermoregulatory model (thermogenic capacity and higher body temperature models). We used data on basal and maximum metabolic rates and body temperature from 17 rodent populations, and used intrinsic population growth rate (R(max)) as a global proxy of fitness. We found greater support for the thermogenic capacity model of the thermoregulatory model. In other words, greater thermogenic capacity is associated with increased fitness in rodent populations. To our knowledge, this is the first test of the fitness consequences of the thermoregulatory and parental care models for the origin of endothermy.  相似文献   

2.
A bioheat model for the elderly was developed focusing on blood flow circulatory changes that influence their thermal response in warm and cold environments to predict skin and core temperatures for different segments of the body especially the fingers. The young adult model of Karaki et al. (Int J Therm Sci 67:41–51, 2013) was modified by incorporation of the physiological thermoregulatory and vasomotor changes based on literature observations of physiological changes in the elderly compared to young adults such as lower metabolism and vasoconstriction diminished ability, skin blood flow and its minimum and maximum values, the sweating values, skin fat thickness, as well as the change in threshold parameter related to core or skin temperatures which triggers thermoregulatory action for sweating, maximum dilatation, and maximum constriction. The developed model was validated with published experimental data for elderly exposure to transient and steady hot and cold environments. Predicted finger skin temperature, mean skin temperature, and core temperature were in agreement with published experimental data at a maximum error less than 0.5 °C in the mean skin temperature. The elderly bioheat model showed an increase in finger skin temperature and a decrease in core temperature in cold exposure while it showed a decrease in finger skin temperature and an increase in core temperature in hot exposure.  相似文献   

3.
Skin blood flow (SBF) is a key player in human thermoregulation during mild thermal challenges. Various numerical models of SBF regulation exist. However, none explicitly incorporates the neurophysiology of thermal reception. This study tested a new SBF model that is in line with experimental data on thermal reception and the neurophysiological pathways involved in thermoregulatory SBF control. Additionally, a numerical thermoregulation model was used as a platform to test the function of the neurophysiological SBF model for skin temperature simulation. The prediction-error of the SBF-model was quantified by root-mean-squared-residual (RMSR) between simulations and experimental measurement data. Measurement data consisted of SBF (abdomen, forearm, hand), core and skin temperature recordings of young males during three transient thermal challenges (1 development and 2 validation). Additionally, ThermoSEM, a thermoregulation model, was used to simulate body temperatures using the new neurophysiological SBF-model. The RMSR between simulated and measured mean skin temperature was used to validate the model. The neurophysiological model predicted SBF with an accuracy of RMSR?<?0.27. Tskin simulation results were within 0.37 °C of the measured mean skin temperature. This study shows that (1) thermal reception and neurophysiological pathways involved in thermoregulatory SBF control can be captured in a mathematical model, and (2) human thermoregulation models can be equipped with SBF control functions that are based on neurophysiology without loss of performance. The neurophysiological approach in modelling thermoregulation is favourable over engineering approaches because it is more in line with the underlying physiology.  相似文献   

4.
The body temperature of newborn preterm infants depends on the heat transfer between the infant and the external environment. Factors that influence the heat exchange include the temperature and humidity of the air and the temperature of surfaces in contact with and around the infant. Neonatal thermoregulation has a different pattern as they have an immature thermoregulatory system. For this purpose, mathematical models can provide detailed insights for the heat transfer processes and its applications for clinical purposes. A new multi-compartment mathematical model of the neonatal thermoregulatory system is presented. The formulation of the model is based on the Pennes’ bio-heat equation with suitable boundary and initial conditions. The variational finite element method has been employed to determine heat transfer and exchange in the biological tissues of premature infants. The results obtained in this paper have shown that premature infants are unable to maintain a constant core temperature and resemble the empirically obtained results, proving the validity and feasibility of our model.AMS (2010): Subject classification92BXX, 92CXX, 92C35, 92C50, 46N60.  相似文献   

5.
In farm animals, salivary cortisol has become a widely used parameter for measuring stress responses. However, only few studies have dealt with basal levels of concentration of cortisol in pigs and its circadian rhythm. The aim of this study was to examine the effects of ambient temperature and thermoregulatory behaviour on the circadian rhythm of salivary cortisol levels in fattening pigs. Subjects were 30 fattening pigs of different weight (60 to 100 kg), kept in six groups in an uninsulated building in pens with partly slatted floors. Saliva samples were taken every 2 h over periods of 24 h at different ambient temperatures at two times in winter and four times in summer. Thermoregulatory behaviour was recorded in the same 24-h time periods. The effect of time of day, body weight, ambient temperature and behaviour on the cortisol level was analysed using a mixed-effects model. Two peaks of cortisol levels per day were found. This circadian pattern became more pronounced with increasing weight and on days where thermoregulatory behaviour was shown. Mean cortisol levels per day were affected by weight but not by thermoregulatory behaviour. From our data, we conclude that long-term variations in cortisol concentration may be influenced by increasing age and weight more than by the respective experimental situation. In assessing animal welfare, it seems more reliable to consider the circadian pattern of cortisol concentration instead of only one value per day.  相似文献   

6.
Black-box models of thermoregulatory control have gained increasing importance in describing the properties of the biological thermostat and in devising working hypotheses for further experimental analysis. Incorporation of knowledge acquired independently from the systems analysis approach into black-box models of thermoregulation has proven useful in improving their predictive ability. The pieces of "borrowed knowledge" from independent analysis which are currently utilized in devising models of homeothermic thermoregulation comprise: the proportional control property of the biological thermostat, the Sherringtonian principles of synaptic interaction, the multiple input control of thermoregulatory effectors with differential input-effector coupling, the lack of significant thermosensory contribution from the hypothalamus in birds, the existence of warm and cold receptors and the thermal characteristics of their responses, and the Q10-type temperature dependence of temperature signal transmission within the central nervous system. Consideration of these pieces of borrowed knowledge has resulted in black-box models of temperature regulation in which explicit set-point terms are avoided.  相似文献   

7.
Two measures, amplitude and phase, have been used to describe the characteristics of the endogenous human circadian pacemaker, a biological clock located in the hypothalamus. Although many studies of change in circadian phase with respect to different stimuli have been conducted, the physiologic implications of the amplitude changes (dynamics) of the pacemaker are unknown. It is known that phase changes of the human circadian pacemaker have a significant impact on sleep timing and content, hormone secretion, subjective alertness and neurobehavioral performance. However, the changes in circadian amplitude with respect to different stimuli are less well documented. Although amplitude dynamics of the human circadian pacemaker are observed in physiological rhythms such as plasma cortisol, plasma melatonin and core temperature data, currently methods are not available to accurately characterize the amplitude dynamics from these rhythms. Of the three rhythms core temperature is the only reliable variable that can be monitored continuously in real time with a high sampling rate. To characterize the amplitude dynamics of the circadian pacemaker we propose a stochastic-dynamic model of core temperature data that contains both stochastic and dynamic characteristics. In this model the circadian component that has a dynamic characteristic is represented as a perturbation solution of the van der Pol equation and the thermoregulatory response in the data that has a stochastic characteristic is represented as a first-order autoregressive process. The model parameters are estimated using data with a maximum likelihood procedure and the goodness-of-fit measures along with the associated standard error of the estimated parameters provided inference about the amplitude dynamics of the pacemaker. Using this model we analysed core temperature data from an experiment designed to exhibit amplitude dynamics. We found that the circadian pacemaker recovers slowly to an equilibrium level following amplitude suppression. In humans this reaction to perturbation from equilibrium value has potential physiological implications.  相似文献   

8.
Regulation of nest temperature is important to the fitness of eusocial insect colonies. To maintain appropriate conditions for the developing brood, workers must exhibit thermoregulatory responses to ambient temperature. Because nest-mate workers differ in task performance, thermoregulatory behavior provides an opportunity to test threshold of response models for the regulation of division of labor. We found that worker bumble bees ( Bombus bifarius nearcticus ) responded to changes in ambient temperature by altering their rates of performing two tasks – wing fanning and brood cell incubation. At the colony level, the rate of incubating decreased, and the rate of fanning increased, with increasing temperature. Changes in the number of workers performing these tasks were more important to the colony response than changes in workers' task performance rates. At the individual level, workers' lifetime rates of incubation and fanning were positively correlated, and most individuals did not specialize exclusively on either of these temperature-sensitive tasks. However, workers differed in the maximum temperature at which they incubated and in the minimum temperature at which they fanned. More individuals fanned at high and incubated at low temperatures. Most of the workers that began incubating at higher temperatures continued performing this task at lower temperatures, when additional nest-mates became active. The converse was true for fanning behavior. These data are consistent with a threshold of response model for thermoregulatory behavior of B. bifarius workers.  相似文献   

9.
A close relation between sleep and body temperature has been noted already for a long time. Although a correlation is indisputable, there is at present hardly evidence for a causal involvement of sleep in changes in body temperature. Concerning the reverse, a causal involvement of body temperature in sleep has been demonstrated: if core or skin temperature changes activate thermoregulatory processes aimed at heat loss or heat preservation, sleep is usually disrupted. We have recently proposed that sleep propensity is also affected by more subtle changes in skin temperature, within the thermoneutral range (Van Someren (2000). Chronobiol. Int. 17, 313–354). These changes are likely to modulate the firing properties of thermosensitive neurons in brain areas involved in sleep regulation. Subtle changes in skin temperature occur daily under control of the circadian timing system. They could provide this system with an additional signal pathway to support its neuronal and neurohormonal signals to enforce circadian modulation of sleep propensity. Subtle changes in skin temperature also result from behavior, and could contribute to the changes in sleep propensity resulting from these behaviors. The present review summarizes the neurobiological background and correlational physiological and behavioral data in support of the involvement of skin temperature in the modulation of sleep propensity. It moreover points out the type of experimental investigations needed to support or refute the hypothesis.  相似文献   

10.
Summary Pieris butterflies use a novel behavioral posture for thermoregulation called reflectance basking, in which the wings are used as solar reflectors to reflect radiation to the body. As a means of exploring the thermoregulatory significance of wing melanization patterns, I examine the relation of basking posture and wing color pattern to body temperature. A mathematical model of the reflectance process predicts certain combinations of dorsal wing melanization pattern and basking posture that maximize body temperature. Laboratory experiments and field observations show that this model correctly predicts qualitative differences in the relation of body temperature to basking posture based on differences in the extent of dorsal melanization on the wing margins, both between species and between sexes within species of Pieris. This is the first demonstration in insects that coloration of the entire wing surface can affect thermoregulation. Model and experimental results suggest that, in certain wing regions, increased melanization can reduce body temperature in Pieris; this effect of melanization is exactly the opposite of that found in other Pierid butterflies that use their wings as solar absorbers. These results are discussed in terms of the evolution of wing melanization pattern and thermoregulatory behavior in butterflies.  相似文献   

11.
Thermoregulatory physiology of menopausal hot flashes: a review   总被引:3,自引:0,他引:3  
Hot flashes during the climacteric years have long been a frequent clinical complaint, generally considered within the realm of the internist, gynecologist, or endocrinologist. Yet the underlying mechanism of hot flashes remains unknown. Only within the past 10 years has there been significant research on hot flashes as a disturbance of thermoregulation. This paper focuses on thermoregulatory aspects of hot flashes, reviewing current knowledge of the thermoregulatory physiology and endocrinology of hot flashes and discussing future avenues for research. Hot flashes are compared with fever in terms of thermoregulatory changes and speculated mechanisms. Although several substances in the peripheral circulation are found in increased concentrations during hot flashes, none is a trigger for a hot flash. The pattern of hot flash occurrence is striking in its regularity, and the possibility of endogenous rhythmicity is discussed. Recently, investigators have begun to explore a primate model of menopausal hot flashes. These studies are summarized. Finally, the multiple effects of estrogen on various systems of the body and their interrelationships are discussed. An understanding of the mechanism of hot flashes would not only be of importance to women suffering with hot flashes but would further our knowledge of thermoregulatory function and the interactions between thermoregulatory and reproductive systems.  相似文献   

12.
The rate of the electromagnetic energy deposition and the resultant thermoregulatory response of a block model of a squirrel monkey exposed to plane-wave fields at 350 MHz were calculated using a finite-difference procedure. Noninvasive temperature measurements in live squirrel monkeys under similar exposure conditions were obtained using Vitek probes. Calculations exhibit reasonable correlation with the measured data, especially for the rise in colonic temperature.  相似文献   

13.
Neurons in the dorsomedial hypothalamus (DMH) play key roles in physiological responses to exteroceptive ("emotional") stress in rats, including tachycardia. Tachycardia evoked from the DMH or seen in experimental stress in rats is blocked by microinjection of the GABA(A) receptor agonist muscimol into the rostral raphe pallidus (rRP), an important thermoregulatory site in the brain stem, where disinhibition elicits sympathetically mediated activation of brown adipose tissue (BAT) and cutaneous vasoconstriction in the tail. Disinhibition of neurons in the DMH also elevates core temperature in conscious rats and sympathetic activity to least significant difference interscapular BAT (IBAT) and IBAT temperature in anesthetized preparations. The latter effects are blocked by microinjection of muscimol into the rRP, while microinjection of muscimol into either the rRP or DMH suppresses increases in sympathetic nerve activity to IBAT, IBAT temperature, and core body temperature elicited either by microinjection of PGE(2) into the preoptic area (an experimental model for fever), or central administration of fentanyl. Neurons concentrated in the dorsal region of the DMH project directly to the rRP, a location corresponding to that of neurons trans-synaptically labeled from IBAT. Thus these neurons control nonshivering thermogenesis in rats, and their activation signals its recruitment in diverse experimental paradigms. Evidence also points to a role for neurons in the DMH in thermoregulatory cutaneous vasoconstriction, shivering, and endocrine adjustments. These directions provide intriguing avenues for future exploration that may expand our understanding of the DMH as an important hypothalamic site for the integration of autonomic, endocrine, and behavioral responses to diverse challenges.  相似文献   

14.
In contrast to the classical homeostatic concept of the constancy of the central temperature, this study proposes an original model of thermoregulation based on the optimization of energy transfers. Exchange of the energy consumed or produced by the cell between the cell and the external medium has an associated energy cost. The different variables of the internal medium — flows, pressures, concentrations and also temperatures, since heat is but a particular form of energy — are continuously set at optimal values such that this cost is always minimal for the prevailing constraints with which the organism is faced. The proposed thermoregulatory model accounts for the physiological spatial and temporal variability of the body's temperatures. The predictive curves suggest a new approach to experimental studies concerned with thermal regulation and throw new light on their results.  相似文献   

15.
Some biologists embrace the classical view that changes in behavior inevitably initiate or drive evolutionary changes in other traits, yet others note that behavior sometimes inhibits evolutionary changes. Here we develop a null model that quantifies the impact of regulatory behaviors (specifically, thermoregulatory behaviors) on body temperature and on performance of ectotherms. We apply the model to data on a lizard (Anolis cristatellus) and show that thermoregulatory behaviors likely inhibit selection for evolutionary shifts in thermal physiology with altitude. Because behavioral adjustments are commonly used by ectotherms to regulate physiological performance, regulatory behaviors should generally constrain rather than drive evolution, a phenomenon we call the "Bogert effect." We briefly review a few other examples that contradict the classical view of behavior as the inevitable driving force in evolution. Overall, our analysis and brief review challenge the classical view that behavior is invariably the driving force in evolution, and instead our work supports the alternative view that behavior has diverse--and sometimes conflicting--effects on the directions and rates at which other traits evolve.  相似文献   

16.
17.
Nonthermoregulatory control of human skin blood flow   总被引:4,自引:0,他引:4  
Although it is well accepted that skin blood flow (SkBF) in humans is controlled by thermoregulatory reflexes, the conclusion that the cutaneous circulation is also controlled by reflexes of nonthermoregulatory origin is not universally held. This review considers the extent to which the cutaneous circulation participates in baroreceptor-mediated reflexes and in the reflexes associated with exercise. Exercise is explored in some detail, because it elicits both thermoregulatory and nonthermoregulatory reflexes. The overall conclusion reached is that thermoregulatory control of SkBF is subject to modification by or competition from several other sources. The fundamental pattern for control of SkBF is described by the threshold and slope of the SkBF-internal temperature relationship. Reflex effects of skin temperature act to shift the threshold of this relationship such that lower levels of skin temperature are associated with higher threshold internal temperatures at which cutaneous vasodilation begins. Similarly, baroreceptor reflexes, reflexes associated with exercise, and effects of some cardiovascular disease also operate against this background. Although modification of the SkBF-internal temperature slope is occasionally seen, the most consistent effect of these nonthermoregulatory factors is to elevate the threshold internal temperature for cutaneous vasodilation. The consequence of this modification of thermoregulatory control of SkBF is that temperature regulation will often suffer when increases in SkBF are delayed or limited. Blood flow to other regions, possibly including active skeletal muscle, may also be compromised when thermoregulatory demands for SkBF are high.  相似文献   

18.
Objective: The aim of the present study was to test the thermoregulatory feeding control hypothesis in sleeping, premature infants. Research Methods and Procedures: In premature infants, the energy supply from food intake is crucial for (in order of importance): organ operation, body homeothermia, and optimal growth. The Himms‐Hagen model of thermoregulatory feeding control involving activation of heat production by brown adipose tissue (BAT) was formulated on the basis of work in (awake) rats. This hypothesis has also been put forward for the human neonate, which can also use BAT to produce metabolic heat. According to the model, feeding episodes occur during a transient increase in body temperature. Feeding is initiated by a dip in blood glucose concentration after sugar uptake by activated BAT. Results: In 14 neonates (bottle‐fed on demand), food intake always took place during an increase in skin temperature (+0.19 ± 0.21 °C). Awakening occurred 18 ± 17 minutes after the minimum skin temperature level had been reached. When feeding time was imposed, feeding was not necessarily situated during an increase in skin temperature, and the sleep duration after food intake increased significantly (+43%). This could be considered as an adaptive response to the short‐term sleep deprivation and/or stress elicited by an imposed feeding rhythm. Discussion: The validity of the model supports the use of on‐demand feeding in neonatal care units, in accordance with the infant's physiological body temperature oscillations.  相似文献   

19.
The thermoregulatory hypothesis proposes that endothermy in mammals and birds evolved as a thermoregulatory mechanism per se and that natural selection operated directly to increase body temperature and thermal stability through increments in resting metabolic rate. We experimentally tested this hypothesis by measuring the thermoregulatory consequences of increased metabolic rate in resting lizards (Varanus exanthematicus). A large metabolic increment was induced by feeding the animals and consequent changes in metabolic rate and body temperature were monitored. Although metabolic rate tripled at 32 degrees C and quadrupled at 35 degrees C, body temperature rose only about 0.5 degrees C. The rate of decline of body temperature in a colder environment did not decrease as metabolic rate increased. Thus, increasing the visceral metabolic rate of this ectothermic lizard established neither consequential endothermy nor homeothermy. These results are inconsistent with a thermoregulatory explanation for the evolution of endothermy.  相似文献   

20.
This paper addresses the question of how the relationship between morphological structure and functional performance differs in related groups of organisms. I describe the relationship between a suite of phenotypic characters (behavioral posture and the pattern of wing pigmentation) and one function of these characters (thermoregulatory performance) for two groups of butterflies in the family Pieridae, focusing on how behavior and wing pattern interact to affect specific aspects of thermoregulation. Using both natural and experimentally created variation in wing-melanization patterns, I develop and test a series of predictions about the relations among thermoregulatory posture, melanization pattern, body temperature, and flight activity. Results show that increased melanization in different wing regions has positive, negative, or neutral effects in increasing body temperature of Pieris butterflies. The angle of the wings used during basking alters the relative importance of different modes of heat transfer and thereby determines the contribution of different dorsal wing regions to thermoregulation. Experimentally increased dorsal melanization can either increase or decrease the onset of flight activity and can directly alter thermoregulatory posture. For Pieris, dorsal melanization affects basking and flight, while ventral melanization primarily affects overheating. These results are used to generate a functional map relating melanization pattern to thermoregulatory performance in Pieris. Reflectance-basking posture, white background color, and melanization pattern represent coadapted characters in Pieris that interact to determine thermoregulatory performance. The differences in thermoregulatory posture and background color between pierid butterflies in the subfamilies Pierinae and Coliadinae have led to a reorganization and partial reversal of the thermoregulatory effects of melanization pattern. I suggest that this change in the physical mechanism of thermoregulatory adaption in pierids has qualitatively altered the nature of selection on wing-melanization pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号