首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the presence of [gamma-32P]ATP the bovine adrenal pyruvate dehydrogenase complex accepts the label simultaneously and becomes inactivated. This suggests the existence of kinase in the composition of the complex as is typical of the complexes from other animal sources. The Pi is incorporated into the subunit with molecular weight of 42 000. The kinase activity of the adrenal pyruvate dehydrogenase complex is high: within the first 20 sec of incubation with ATP the inactivation is as high as 60%. The pH optimum for kinase is around 7.3. The apparent Km value for ATP with 50 mM KCl is 7 microM; that in the absence of KCl is 10 microM. ADP is a competitive inhibitor of kinase with respect to ATP (Ki = 100 microM), when K+ are present in the medium. Thiamine pyrophosphate and pyruvate decrease the rate of pyruvate dehydrogenase complex inactivation.  相似文献   

2.
The control of pyruvate dehydrogenase activity by inactivation and activation was studied in intact mitochondria isolated from rabbit heart. Pyruvate dehydrogenase could be completely inactivated by incubating mitochondria with ATP, oligomycin, and NaF. This loss in dehydrogenase activity was correlated with the incorporation of 32P from [gamma-32P]ATP into mitochondrial protein(s) and with a decrease in the mitochondrial oxidation of pyruvate. ATP may be supplied exogenously, generated from endogenous ADP during oxidative phosphorylation, or formed from exogenous ADP in carbonyl cyanid p-trifluoromethoxyphenylhydrazone-uncoupled mitochondria. With coupled mitochondria the concentration of added ATP required to half-inactivate the dehydrogenase was 0.24 mM. With uncoupled mitochondria the apparent Km was decreased to 60 muM ATP. Inactivation of pyruvate dehydrogenase by exogenous ATP was sensitive to atractyloside, suggesting that pyruvate dehydrogenase kinase acts internally to the atractyloside-sensitive barrier. The divalent cation ionophore, A23187, enhanced the loss of dehydrogenase activity. Pyruvate dehydrogenase activity is regulated additionally by pyruvate, inorganic phosphate, and ADP. Pyruvate, in the presence of rotenone, strongly inhibited inactivation. This suggests that pyruvate facilitates its own oxidation and that increases in pyruvate dehydrogenase activity by substrate may provide a modulating influence on the utilization of pyruvate via the tricarboxylate cycle. Inorganic phosphate protected the dehydrogenase from inactivation by ATP. ADP added to the incubation mixture together with ATP inhibited the inactivation of pyruvate dehydrogenase. This protection may result from a direct action on pyruvate dehydrogenase kinase, as ADP competes with ATP, and an indirect action, in that ADP competes with ATP for the translocase. It is suggested that the intramitochondrial [ATP]:[ADP] ratio effects the kinase activity directly, whereas the cytosolic [ATP]:[ADP] ratio acts indirectly. Mg2+ enhances the rate of reactivation of the inactivated pyruvate dehydrogenase presumably by accelerating the rate of dephosphorylation of the enzyme. Maximal activation is obtained with the addition of 0.5 mM Mg2+..  相似文献   

3.
The regulatory effects of alpha-ketoisovalerate on purified bovine heart pyruvate dehydrogenase complex and endogenous pyruvate dehydrogenase kinase were investigated. Incubation of pyruvate dehydrogenase complex with 0.125 to 10 mM alpha-ketoisovalerate caused an initial lag in enzymatic activity, followed by a more linear but inhibited rate of NADH production. Incubation with 0.0125 or 0.05 mM alpha-ketoisovalerate caused pyruvate dehydrogenase inhibition, but did not cause the initial lag in pyruvate dehydrogenase activity. Gel electrophoresis and fluorography demonstrated the incorporation of acyl groups from alpha-keto[2-14C]isovalerate into the dihydrolipoyl transacetylase component of the enzyme complex. Acylation was prevented by pyruvate and by arsenite plus NADH. Endogenous pyruvate dehydrogenase kinase activity was stimulated specifically by K+, in contrast to previous reports, and kinase stimulation by K+ correlated with pyruvate dehydrogenase inactivation. Maximum kinase activity in the presence of K+ was inhibited 62% by 0.1 mM thiamin pyrophosphate, but was inhibited only 27% in the presence of 0.1 mM thiamin pyrophosphate and 0.1 mM alpha-ketoisovalerate. Pyruvate did not affect kinase inhibition by thiamin pyrophosphate at either 0.05 or 2 mM. The present study demonstrates that alpha-ketoisovalerate acylates heart pyruvate dehydrogenase complex and suggests that acylation prevents thiamin pyrophosphate-mediated kinase inhibition.  相似文献   

4.
The mammalian pyruvate dehydrogenase multi-enzyme complex contains a tightly-associated 50 000-Mr polypeptide of unknown function (component X) in addition to its three constituent enzymes, pyruvate dehydrogenase (E1), lipoate acetyltransferase (E2) and lipoamide dehydrogenase (E3) which are jointly responsible for production of CoASAc and NADH. The presence of component X is apparent on sodium dodecyl sulphate/polyacrylamide gel analysis of the complex, performed in Tris-glycine buffers although it co-migrates with the E3 subunit on standard phosphate gels run under denaturing conditions. Refined immunological techniques, employing subunit-specific antisera to individual components of the pyruvate dehydrogenase complex, have demonstrated that protein X is not a proteolytic fragment of E2 (or E3) as suggested previously. In addition, anti-X serum elicits no cross-reaction with either subunit of the intrinsic kinase of the pyruvate dehydrogenase complex. Immune-blotting analysis of SDS extracts of bovine, rat and pig cell lines and derived subcellular fractions have indicated that protein X is a normal cellular component with a specific mitochondrial location. It remains tightly-associated with the 'core' enzyme, E2, on dissociation of the complex at pH 9.5 or by treatment with 0.25 M MgCl2. This polypeptide is not released to any significant extent from E2 by p-hydroxymercuriphenyl sulphonate, a reagent which promotes dissociation of the specific kinase of the complex from the 'core' enzyme. Incubation of the complex with [2-14C]pyruvate in the absence of CoASH promotes the incorporation of radio-label, probably in the form of acetyl groups, into both E2 and component X.  相似文献   

5.
In contrast to the pyruvate dehydrogenase complex (PDC) from animal mitochondria, our in situ and in vitro studies indicate that the ATP:ADP ratio has little or no effect in regulating the mitochondrial pyruvate dehydrogenase complex from green pea seedlings. Pyruvate was a competitive inhibitor of ATP-dependent inactivation (Ki = 59 microM), while the PDC had a Km for pyruvate of microM. Thiamine pyrophosphate, the coenzyme for the pyruvate dehydrogenase (PDH) component of the complex, did not inhibit ATP-dependent inactivation when used alone but it enhanced inhibition by pyruvate. As such, thiamine pyrophosphate was a competitive inhibitor (Ki = 130 nM) of ATP-dependent inactivation. A model is proposed for the pyruvate plus thiamine pyrophosphate inhibition of ATP-dependent inactivation of the pyruvate dehydrogenase complex in which pyruvate exerts its inhibition of inactivation by altering or protecting the protein substrate from phosphorylation and not by directly inhibiting PDH kinase.  相似文献   

6.
Function of the nonidentical subunits of mammalian pyruvate dehydrogenase   总被引:7,自引:0,他引:7  
The pyruvate dehydrogenase (PDH) component of the bovine kidney pyruvate dehydrogenase complex (PDC) contains two nonidentical subunits. PDH catalyzes the decarboxylation of pyruvate to produce α-hydroxyethylthiamine-PP (HETPP) and the reductive acetylation of the lipoyl moieties of dihydrolipoyl transacetylase with HETPP. Phosphorylation of PDH with PDH kinase and ATP markedly inhibits the first reaction but does not inhibit the second reaction. Since the α-subunit but not the β-subunit of PDH undergoes phosphorylation, these results suggest that the α-subunit catalyzes the first reaction and the β-subunit catalyzes the second reaction. Thiamine-PP reduces the rate of phosphorylation of PDC by PDH kinase and ATP. Phosphorylation of PDC increases the KD of the PDC-Mg-thiamine-PP complex about 12-fold. It appears that the thiamine-PP binding site and the phosphorylation site on PDH influence each other and that HETPP is bound to PDH in a different orientation or possibly at a different site than is thiamine-PP.  相似文献   

7.
The pyruvate dehydrogenase component of the bovine kidney pyruvate dehydrogenase complex has two thiamin-PP binding sites per α2β2 tetramer. Titration of these binding sites with the transition state analog, thiamin thiazolone pyrophosphate, strongly inhibits phosphorylation of pyruvate dehydrogenase by pyruvate dehydrogenase kinase and ATP. The analog has little effect, if any, on dephosphorylation of phosphorylated pyruvate dehydrogenase by pyruvate dehydrogenase phosphatase. Phosphorylation of pyruvate dehydrogenase inactivates the enzyme, but does not significantly affect the thiamin-PP binding sites. It appears that phosphorylation produces a conformational change in pyruvate dehydrogenase that displaces a catalytic group (or groups) at the active center.  相似文献   

8.
The effect of highly purified bovine cytosolic adrenal cortical protein kinase isozyme II catalytic subunit (ATP: Protein Phosphotransferase EC 2.7.1.37) on the formation of pregnenolone from cholesterol in rat and bovine adrenal mitochondrial extracts has been investigated. No stimulation was observed although a low level incorporation of [32P] from [32P]-ATP into a component or components of the extract was detected. The mitochondrial extracts contained alkaline phosphatase activity that was inhibited by L-cysteine and dithiothreitol. It is concluded that the acute stimulation by ACTH of corticoid production in the rat adrenal does not involve protein kinase mediated phosphorylation of a component or components of the cholesterol sidechain cleavage mixed-function oxygenase system.  相似文献   

9.
The mechanism by which fatty acid addition leads to the inactivation of pyruvate dehydrogenase in intact rat liver mitochondria was investigated. In all cases the fatty acid octanoate was added to mitochondria oxidizing succinate. Addition of fatty acid caused an inactivation of pyruvate dehydrogenase in mitochondria incubated under State 3 conditions (glucose plus hexokinase), in uncoupled, oligomycin-treated mitochondria, and in rotenone-menadione-treated mitochondria, but not in uncoupled mitochondria or in mitochondria incubated under State 4 conditions. A number of metabolic conditions were found in which pyruvate dehydrogenase was inactivated concomitant with an elevation in the ATP/ADP ratio. This is consistent with the inverse relationship between the ATP/ADP ratio and the pyruvate dehydrogenase activity proposed by various laboratories. However, in several other metabolic conditions pyruvate dehydrogenase was inactivated while the ATP/ADP ratio either was unchanged or even decreased. This observation implies that there are likely other regulatory factors involved in the fatty acid-mediated inactivation of pyruvate dehydrogenase. Incubation conditions in State 3 were found in which the ATP/ADP and the acetyl-CoA/CoASH ratios remained constant and the pyruvate dehydrogenase activity was correlated inversely with the NADH/NAD+ ratio. Other State 3 conditions were found in which the ATP/ADP and the NADH/NAD+ ratios remained constant while the pyruvate dehydrogenase activity was correlated inversely with the acetyl-CoA/CoASH ratio. Further evidence supporting these experiments with intact mitochondria was the observation that the pyruvate dehydrogenase kinase activity of a mitochondrial extract was stimulated strongly by acetyl-CoA and was inhibited by NAD+ and CoASH. In contrast to acetyl-CoA, octanoyl-CoA inhibited the kinase activity. These results indicate that the inactivation of pyruvate dehydrogenase by fatty acid in isolated rat liver mitochondria may be mediated through effects of the NADH/NAD+ ratio and the acetyl-CoA/CoASH ratio on the interconversion of the active and inactive forms of the enzyme complex catalyzed by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase.  相似文献   

10.
D J Uhlinger  C Y Yang  L J Reed 《Biochemistry》1986,25(19):5673-5677
The pyruvate dehydrogenase complex was purified to homogeneity from bakers' yeast (Saccharomyces cerevisiae). No pyruvate dehydrogenase kinase activity was detected at any stage of the purification. However, the purified pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. The protein-bound radioactivity was localized in the pyruvate dehydrogenase alpha subunit. The phosphorylated, inactive pyruvate dehydrogenase complex was dephosphorylated and reactivated with purified pyruvate dehydrogenase phosphatase from bovine heart. Tryptic digestion of the 32P-labeled complex yielded a single phosphopeptide, which was purified to homogeneity. The sequence of the phosphopeptide was established to be Tyr-Gly-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Thr-Thr-Tyr-Arg. This sequence is very similar to the sequence of a tryptic phosphotetradecapeptide derived from the alpha subunit of bovine kidney and heart pyruvate dehydrogenase: Tyr-His-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Val-Ser-Tyr-Arg.  相似文献   

11.
1. Cytosolic and mitochondrial ATP and ADP concentrations of liver cells isolated from normal fed, starved and diabetic rats were determined. 2. The cytosolic ATP/ADP ratio was 6,9 and 10 in normal fed, starved and diabetic rats respectively. 3. The mitochondrial ATP/ADP ratio was 2 in normal and diabetic rats and 1.6 in starved rats. 4. Adenosine increased the cytosolic and lowered the mitochondrial ATP/ADP ratio, whereas atractyloside had the opposite effect. 5. Incubation of the hepatocytes with fructose, glycerol or sorbitol led to a fall in the ATP/ADP ratio in both the cytosolic and the mitochondrial compartment. 6. The interrelationship between the mitochondrial ATP/ADP ratio and the phosphorylation state of pyruvate dehydrogenase in intact cells was studied. 7. In hepatocytes isolated from fed rats an inverse correlation between the mitochondrial ATP/ADP ratio and the active form of pyruvate dehydrogenase (pyruvate dehydrogenase a) was demonstrable on loading with fructose, glycerol or sorbitol. 8. No such correlation was obtained with pyruvate or dihydroxyacetone. For pyruvate, this can be explained by inhibition of pyruvate dehydrogenase kinase. 9. Liver cells isolated from fed animals displayed pyruvate dehydrogenase a activity twice that found in vivo. Physiological values were obtained when the hepatocytes were incubated with albumin-oleate, which also yielded the highest mitochondrial ATP/ADP ratio.  相似文献   

12.
Bovine kidney mitochondrial extracts contain an inactive protamine kinase and an inactive casein kinase. The protamine kinase was activated by chromatography on poly(L-lysine)-agarose. Two forms of this soluble mitochondrial protamine kinase were separated by chromatography on protamine-agarose. Both forms were purified about 80,000-fold to apparent homogeneity. Both forms of the protamine kinase consist of a single polypeptide chain with an apparent Mr approximately 45,000. Both enzyme forms underwent autophosphorylation without significant effect on activity, and both forms exhibited identical substrate specificities. The protamine kinase showed little activity toward branched-chain alpha-keto acid dehydrogenase (less than 3%), and it was essentially inactive (less than 0.1%) with pyruvate dehydrogenase, casein, and ovalbumin. The enzyme was active with histone H1 and with bovine serum albumin. Protamine kinase activity was unaffected by heparin (up to 100 micrograms/ml), by the protein inhibitor of cyclic AMP-dependent protein kinase, by Ca2+ and calmodulin, and by monoclonal antibody to the catalytic domain of protein kinase C from rat brain. The casein kinase was activated in the presence of spermine or by chromatography of the extract on DEAE-cellulose or poly(L-lysine)-agarose. The enzyme was purified about 80,000-fold to apparent homogeneity. It exhibited an apparent Mr 130,000 as determined by gel-permeation chromatography on Sephacryl S-300 in the presence of 0.5 M NaCl. Two subunits, with apparent Mr's 36,000 (alpha) and 28,000 (beta) were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The kinase underwent autophosphorylation of its beta-subunit, without significant effect on activity. Casein kinase activity was inhibited 50% by 1.5 micrograms/ml of heparin. Spermine (1.0 mM) stimulated activity of the purified kinase two- to three-fold at 1.5 mM Mg2+. Half-maximal stimulation occurred at 0.1 mM spermine. The kinase utilized both ATP and GTP as substrates. The casein kinase showed little activity (less than 1%) toward pyruvate dehydrogenase and branched-chain alpha-keto acid dehydrogenase from kidney mitochondria, and the kinase was essentially inactive with glycogen synthase a. The properties of this soluble mitochondrial kinase indicate that it is a type II casein kinase.  相似文献   

13.
The ATP-dependent inactivation of the pyruvate dehydrogenase complex (PDC) was examined using ruptured mitochondria and partially purified pyruvate dehydrogenase complex isolated from broccoli and cauliflower (Brassica oleracea) bud mitochondria. The ATP-dependent inactivation was temperature- and pH-dependent. [(32)P]ATP experiments show a specific transphosphorylation of the gamma-PO(4) of ATP to the complex. The phosphate attached to the PDC was labile under mild alkaline but not under mild acidic conditions. The inactivated-phosphorylated PDC was not reactivated by 20 mm MgCl(2), dialysis, Sephadex G-25 treatment, apyrase action, or potato acid phosphatase action. However, partially purified bovine heart PDC phosphatase catalyzed the reactivation and dephosphorylation of the isolated plant PDC. The ATP-dependent inactivation-phosphorylation of the PDC was inhibited by pyruvate. It is concluded that the ATP-dependent inactivation-phosphorylation of broccoli and cauliflower mitochondrial PDC is catalyzed by a PDC kinase. It is further concluded that the PDC from broccoli and cauliflower mitochondria is capable of interconversion between an active (dephosphorylated) and an inactive (phosphorylated) form.  相似文献   

14.
The effect of ATP on bovine adrenal cortex pyruvate kinase has been studied. ATP is a competitive inhibitor of the enzyme, the Ki being 3.2 mM. Based on the efficiency of tryptophan fluorescence quenching, it was concluded that the magnesium complex of ATP is a true enzyme inhibitor. The role of Mg2+ in the inhibition process consists in the formation of a bridge between the enzyme and ATP. The ATP-dependent mechanism of pyruvate kinase inhibition is a potential physiological regulator of the enzyme determining the lower threshold of its sensitivity in vivo.  相似文献   

15.
1. The ;initial activity' of the pyruvate dehydrogenase enzyme complex in whole tissue or mitochondrial extracts of lactating rat mammary glands was greatly decreased by 24 or 48h starvation of the rats. Injection of insulin and glucose into starved rats 60min before removal of the glands abolished this difference in ;initial activities'. 2. The ;total activity' of the enzyme complex in such extracts was revealed by incubation in the presence of free Mg(2+) and Ca(2+) ions (more than 10 and 0.1mm respectively) and a crude preparation of pig heart pyruvate dehydrogenase phosphatase. Starvation did not alter this ;total activity'. It is assumed that the decline in ;initial activity' of the enzyme complex derived from the glands of starved animals was due to increased phosphorylation of its alpha-subunit by intrinsic pyruvate dehydrogenase kinase. 3. Starvation led to an increase in intrinsic pyruvate dehydrogenase kinase activity in both whole tissue and mitochondrial extracts. Injection of insulin into starved animals 30min before removal of the lactating mammary glands abolished the increase in pyruvate dehydrogenase kinase activity in whole-tissue extracts. 4. Pyruvate (1mm) prevented ATP-induced inactivation of the enzyme complex in mitochondrial extracts from glands of fed animals. In similar extracts from starved animals pyruvate was ineffective. 5. Starvation led to a decline in activity of pyruvate dehydrogenase phosphatase in mitochondrial extracts, but not in whole-tissue extracts. 6. These changes in activity of the intrinsic kinase and phosphatase of the pyruvate dehydrogenase complex of lactating rat mammary gland are not explicable by current theories of regulation of the complex.  相似文献   

16.
17.
Mitochondria play central roles in acute brain injury; however, little is known about mitochondrial function following traumatic brain injury (TBI) to the immature brain. We hypothesized that TBI would cause mitochondrial dysfunction early (<4 h) after injury. Immature rats underwent controlled cortical impact (CCI) or sham injury to the left cortex, and mitochondria were isolated from both hemispheres at 1 and 4 h after TBI. Rates of phosphorylating (State 3) and resting (State 4) respiration were measured with and without bovine serum albumin. The respiratory control ratio was calculated (State 3/State 4). Rates of mitochondrial H(2)O(2) production, pyruvate dehydrogenase complex enzyme activity, and cytochrome c content were measured. Mitochondrial State 4 rates (ipsilateral/contralateral ratios) were higher after TBI at 1 h, which was reversed with bovine serum albumin. Four hours after TBI, pyruvate dehydrogenase complex activity and cytochrome c content (ipsilateral/contralateral ratios) were lower in TBI mitochondria. These data demonstrate abnormal mitochondrial function early (相似文献   

18.
Regulation of heart muscle pyruvate dehydrogenase kinase   总被引:31,自引:25,他引:6       下载免费PDF全文
1. The activity of pig heart pyruvate dehydrogenase kinase was assayed by the incorporation of [(32)P]phosphate from [gamma-(32)P]ATP into the dehydrogenase complex. There was a very close correlation between this incorporation and the loss of pyruvate dehydrogenase activity with all preparations studied. 2. Nucleoside triphosphates other than ATP (at 100mum) and cyclic 3':5'-nucleotides (at 10mum) had no significant effect on kinase activity. 3. The K(m) for thiamin pyrophosphate in the pyruvate dehydrogenase reaction was 0.76mum. Sodium pyrophosphate, adenylyl imidodiphosphate, ADP and GTP were competitive inhibitors against thiamin pyrophosphate in the dehydrogenase reaction. 4. The K(m) for ATP of the intrinsic kinase assayed in three preparations of pig heart pyruvate dehydrogenase was in the range 13.9-25.4mum. Inhibition by ADP and adenylyl imidodiphosphate was predominantly competitive, but there was nevertheless a definite non-competitive element. Thiamin pyrophosphate and sodium pyrophosphate were uncompetitive inhibitors against ATP. It is suggested that ADP and adenylyl imidodiphosphate inhibit the kinase mainly by binding to the ATP site and that the adenosine moiety may be involved in this binding. It is suggested that thiamin pyrophosphate, sodium pyrophosphate, adenylyl imidodiphosphate and ADP may inhibit the kinase by binding through pyrophosphate or imidodiphosphate moieties at some site other than the ATP site. It is not known whether this is the coenzyme-binding site in the pyruvate dehydrogenase reaction. 5. The K(m) for pyruvate in the pyruvate dehydrogenase reaction was 35.5mum. 2-Oxobutyrate and 3-hydroxypyruvate but not glyoxylate were also substrates; all three compounds inhibited pyruvate oxidation. 6. In preparations of pig heart pyruvate dehydrogenase free of thiamin pyrophosphate, pyruvate inhibited the kinase reaction at all concentrations in the range 25-500mum. The inhibition was uncompetitive. In the presence of thiamin pyrophosphate (endogenous or added at 2 or 10mum) the kinase activity was enhanced by low concentrations of pyruvate (25-100mum) and inhibited by a high concentration (500mum). Activation of the kinase reaction was not seen when sodium pyrophosphate was substituted for thiamin pyrophosphate. 7. Under the conditions of the kinase assay, pig heart pyruvate dehydrogenase forms (14)CO(2) from [1-(14)C]pyruvate in the presence of thiamin pyrophosphate. Previous work suggests that the products may include acetoin. Acetoin activated the kinase reaction in the presence of thiamin pyrophosphate but not with sodium pyrophosphate. It is suggested that acetoin formation may contribute to activation of the kinase reaction by low pyruvate concentrations in the presence of thiamin pyrophosphate. 8. Pyruvate effected the conversion of pyruvate dehydrogenase phosphate into pyruvate dehydrogenase in rat heart mitochondria incubated with 5mm-2-oxoglutarate and 0.5mm-l-malate as respiratory substrates. It is suggested that this effect of pyruvate is due to inhibition of the pyruvate dehydrogenase kinase reaction in the mitochondrion. 9. Pyruvate dehydrogenase kinase activity was inhibited by high concentrations of Mg(2+) (15mm) and by Ca(2+) (10nm-10mum) at low Mg(2+) (0.15mm) but not at high Mg(2+) (15mm).  相似文献   

19.
A synthetic peptide, corresponding to the 14-amino acid tryptic fragment containing phosphorylation sites one and two of bovine mitochondrial pyruvate dehydrogenase, was coupled to Limulus polyphemus hemocyanin and used to produce rabbit polyclonal antibodies. A positive signal was observed when Western blots of bovine, porcine, or yeast mitochondrial pyruvate dehydrogenase complexes were probed with the antibodies but not with blots of bacterial, cellular slime mold, plant mitochondrial, or plant plastid pyruvate dehydrogenase complexes. The antibodies also gave a positive signal when used to probe blots of the bovine kidney branched chain 2-oxo acid dehydrogenase complex. The ATP-dependent phosphorylation/inactivation of rat liver mitochondrial pyruvate dehydrogenase complex could be inhibited by prior incubation with the anti-peptide antibodies.  相似文献   

20.
Budde RJ  Randall DD 《Plant physiology》1988,88(4):1026-1030
The requirements for reactivation (dephosphorylation) of the pea (Pisum sativum L.) leaf mitochondrial pyruvate dehydrogenase complex (PDC) were studied in terms of magnesium and ATP effects with intact and permeabilized mitochondria. The requirement for high concentrations of magnesium for reactivation previously reported with partially purified PDC is shown to affect inactivation rather than reactivation. The observed rate of inactivation catalyzed by pyruvate dehydrogenase (PDH) kinase is always greater than the reactivation rate catalyzed by PDH-P phosphatase. Thus, reactivation would only occur if ATP becomes limiting. However, pyruvate which is a potent inhibitor of inactivation in the presence of thiamine pyrophosphate, results in increased PDC activity. Analysis of the dynamics of the phosphorylation-dephosphorylation cycle indicated that the covalent modification was under steady state control. The steady state activity of PDC was increased by addition of pyruvate. PDH kinase activity increased threefold during storage of mitochondria suggesting that there may be an unknown level of regulation exerted on the enzyme complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号