首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chrysosplenium (Saxifragaceae) consists of 57 species widely distributed in temperate and arctic regions of the Northern Hemisphere, with two species restricted to the southern part of South America. Species relationships within the genus are highly problematic. The genus has traditionally been divided into two groups, sometimes recognized as sections (Oppositifolia and Alternifolia), based on leaf arrangement, or, alternatively, into 17 series. Based on morphological features, Hara suggested that the genus originated in South America and then subsequently migrated to the Northern Hemisphere. We conducted phylogenetic analyses of DNA sequences of the chloroplast gene matK for species of Chrysosplenium to elucidate relationships, test Hara's biogeographic hypothesis for the genus, and examine chromosomal and gynoecial diversification. These analyses revealed that both sections Oppositifolia and Alternifolia are monophyletic and form two large sister clades. Hence, leaf arrangement is a good indicator of relationships within this genus. Hara's series Pilosa and Macrostemon are each also monophyletic; however, series Oppositifolia, Alternifolia, and Nepalensia are clearly not monophyletic. MacClade reconstructions suggest that the genus arose in Eastern Asia, rather than in South America, with several independent migration events from Asia to the New World. In one well-defined subclade, species from eastern and western North America form a discrete clade, with Old World species as their sister group, suggesting that the eastern and western North American taxa diverged following migration to that continent. The South American species forms a clade with species from eastern Asia; this disjunction may be the result of ancient long-distance dispersal. Character mapping demonstrated that gynoecial diversification is dynamic, with reversals from inferior to half-inferior ovaries, as well as to ovaries that appear superior. Chromosomal evolution also appears to be labile with several independent origins of n = 12 (from an original number of n = 11) and multiple episodes of aneuploidy.  相似文献   

2.
The phylogeny of the flycatcher genus Anairetes was previously inferred using short fragments of mitochondrial DNA and parsimony and distance-based methods. The resulting topology spurred taxonomic revision and influenced understanding of Andean biogeography. More than a decade later, we revisit the phylogeny of Anairetes tit-tyrants using more mtDNA characters, seven unlinked loci (three mitochondrial genes, six nuclear loci), more closely related outgroup taxa, partitioned Bayesian analyses, and two coalescent species-tree approaches (Bayesian estimation of species trees, BEST; Bayesian evolutionary analysis by sampling trees, (*)BEAST). Of these improvements in data and analyses, the fourfold increase in mtDNA characters was both necessary and sufficient to incur a major shift in the topology and near-complete resolution. The species-tree analyses, while theoretically preferable to concatenation or single gene approaches, yielded topologies that were compatible with mtDNA but with weaker statistical resolution at nodes. The previous results that had led to taxonomic and biogeographic reappraisal were refuted, and the current results support the resurrection of the genus Uromyias as the sister clade to Anairetes. The sister relationship between these two genera corresponds to an ecological dichotomy between a depauperate humid cloud forest clade and a diverse dry-tolerant clade that has diversified along the latitudinal axis of the Andes. The species-tree results and the concatenation results each reaffirm the primacy of mtDNA to provide phylogenetic signal for avian phylogenies at the species and subspecies level. This is due in part to the abundance of informative characters in mtDNA, and in part to its lower effective population size that causes it to more faithfully track the species tree.  相似文献   

3.
Very few South American avian superspecies or species groups are composed of both forest and non‐forest taxa. The genus Lepidocolaptes comprises 8–9 species of woodcreepers, most of which are forest birds, but two species, L. angustirostris and L. souleyetii, inhabit open vegetations. Therefore, this genus should play an important role in the discussion about the relationships between forest and non‐forest South American avifaunas. Nucleotide sequences from two mitochondrial genes, cytochrome b and ND2, suggest that: (i) L. fuscus should be removed from the genus since its association with other members of this genus is poorly supported. This view has been pointed out also by morphological and behavioural data; (ii) the phylogenetic position of the open‐vegetation species within the Lepidocolaptes radiation indicate that the split between forest and non‐forest elements within this genus took place as recently as two million years ago. This result suggests that the evolutionary relationships between forest and non‐forest biotas in South America may have been more dynamic than previously thought.  相似文献   

4.
There has hitherto been little research into evolutionary and taxonomic relationships amongst species of the freshwater prawn genus Macrobrachium Bate across its global distribution. Previous work by the authors demonstrated that the endemic Australian species did not evolve from a single ancestral lineage. To examine whether other regional Macrobrachium faunas also reflect this pattern of multiple origins, the phylogeny of 30 Macrobrachium species from Asia, Central/South America and Australia was inferred from mitochondrial 16S rRNA sequences. Phylogenetic relationships demonstrate that, despite some evidence for regional diversification, Australia, Asia and South America clearly contain Macrobrachium species that do not share a common ancestry, suggesting that large-scale dispersal has been a major feature of the evolutionary history of the genus. The evolution of abbreviated larval development (ALD), associated with the transition from an estuarine into a purely freshwater lifecycle, was also mapped onto the phylogeny and was shown to be a relatively homoplasious trait and not taxonomically informative. Other taxonomic issues, as well as the evolutionary origins of Macrobrachium , are also discussed.  相似文献   

5.
The historical biogeography of insects in South America is largely unknown, as dated phylogenies have not been available for most groups. We have studied the phylogenetic relationships and historical biogeography of a subtribe of butterflies, Phyciodina in the family Nymphalidae, based on one mitochondrial gene (COI) and two nuclear gene regions (EF-1alpha and wingless). The subtribe comprises 89 species mainly found in tropical South America, with a few species in North America and the Greater Antilles. We find that the enigmatic genus Antillea is sister to the rest of Phyciodina, and suggest that it should be included in the subtribe. Several genera are found to be polyphyletic or nested within another genus, and are proposed to be synonymised. These are Dagon, Castilia, Telenassa and Janatella, which we propose should be synonymised with Eresia. Brazilian "Ortilia" form an independent lineage and require a new genus name. The diversification of Phyciodina has probably taken place over the past about 34 MYA. The ancestral phyciodine colonised South America from North America through a possible landspan that connected the Greater Antilles to South America about 34MYA. A vicariance event left the ancestral Antillea on the Greater Antilles, while the ancestral 0e on South America colonised the Guyanan Shield and soon after the Brazilian Shield. We hypothesise that the Brazilian Shield was an important area for the diversification of Phyciodina. From there, the ancestor of Anthanassa, Eresia and Tegosa colonised NW South America, where especially Eresia diversified in concert with the rising of the Andes beginning about 20 MYA. Central America was colonised from NW South America about 15 MYA by the ancestors of Anthanassa and Phyciodes. Our study is the first to use a dated phylogeny to study the historical biogeography of a group of South American species of butterflies.  相似文献   

6.
With about 350 species, Paspalum is one of the richest genera within the Poaceae. Its species inhabit ecologically diverse areas along the Americas and they are largely responsible for the biodiversity of grassland ecosystems in South America. Despite its size and relevance, no phylogeny of the genus as a whole is currently available and infrageneric relationships remain uncertain. Many Paspalum species consist of sexual-diploid and apomictic-polyploid cytotypes, and several have arisen through hybridization. In this paper we explore the phylogenetic structure of Paspalum using sequence data of four non-coding cpDNA fragments from a wide array of species which were combined with morphological data for a subset of diploid taxa. Our results confirmed the general monophyly of Paspalum if P. inaequivalve is excluded and the small genus Thrasyopsis is included. Only one of the four currently recognized subgenera was monophyletic but nested within the remainder of the genus. Some informal morphological groups were found to be polyphyletic. The placement of known allopolyploid groups is generally congruent with previously stated hypotheses although some species with shared genomic formulae formed paraphyletic arrangements. Other species formed a basal grade including mostly umbrophilous or hygrophilous species. It is hypothesized that the genus may have diversified as a consequence of the expansion of C4 grass-dominated grasslands in South America.  相似文献   

7.
The woodpecker genus Veniliornis comprises 12 species, all restricted to the New World tropics. The seemingly distantly related genus Picoides is broadly distributed in Eurasia and North America with two putative species, P. lignarius and P. mixtus , occurring in South America. The two genera are clearly distinct with respect to general plumage colouration and patterning as well as habitat utilization and thus traditionally have been placed in different tribes. Phylogenetic analyses of mtDNA sequences from the COI and cyt b genes indicated that both genera are reciprocally paraphyletic. The two South American species of Picoides belong to a clade comprising most species of Veniliornis , but V. fumigatus of Central and north-western South America belongs to a clade comprising species of Picoides . The mtDNA tree also indicated that Veniliornis is not closely related to the genus Piculus, as is implicit in current classifications. Misclassifications involving Veniliornis at both the generic and tribal levels appear to result from convergent evolution of plumage traits in specific forest types. We infer that the common ancestor of Veniliornis entered South America approximately at the time the Isthmus of Panama was formed, and diversification within South America was rapid.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 611–624.  相似文献   

8.
The plant genus Halenia (Gentianaceae) consists of herbs growing in temperate and tropical alpine habitats and most species possess flowers in which nectar is produced in spurs. This probably helps reward only specialized long-tongued pollinators, and a narrow pollinator/flower relationship is thought to accelerate diversification rates (a key innovation). To test the pattern of diversification of Halenia against the unspurred sister group we reconstructed phylogenetic relationships among 22 species plus outgroups using nuclear ITS and chloroplast rpl16 intron sequence data. We show that Halenia originated in East Asia and migrated via North America into Central America. From there, it colonized South America three times independently, probably within the last million years. Significant changes in diversification rates were found during the evolution of Halenia using a sister group method, a likelihood method, and a diversity-through-time plot. In contrast to other studies, we could not observe a direct speciation rate effect of the evolution of nectar spurs in comparison with the unspurred sister group of Halenia. Rather, increases in diversification occurred following the colonization of Central and South America by spurred progenitor taxa. This later switch in diversification may have resulted from the availability of new geographical and ecological opportunities, or from the availability of more and different pollinators in these regions. Following the latter hypothesis, the nectar spurs were a preadaption and functioned as a key innovation only in this new biotic environment. After an initial rapid increase, a reduction in diversification rate was observed in Central America, probably illustrating density dependence of speciation rates. Finally, we found preliminary evidence for the key innovation hypothesis in geologically young spurred and unspurred lineages of Halenia in South America.  相似文献   

9.
This analysis corroborates and expands our previous results regarding the phylogenetic position of Cheilanthes species from South America. We sequenced three plastid genetic regions, one genic (rbcL) and two genic plus intergenic spacers (trnL + trnL-F and rps4 + rps4-trnS) from 25 South American cheilanthoid species. This allowed us to elucidate phylogenetic relationships that have been historically unresolved or were lowly supported. Here, we analyzed 45 Cheilanthes species (23 from South America) and circumscribed Cheilanthes s.s. in a strongly supported clade that contains three subclades: (i) exclusively from South America, (ii) from Australasia + South America, and (iii) from Africa. The position of three South American species, previously referred to the informal “Cheilanthes geraniifolia group”, is confirmed as a highly supported group outside Cheilanthes s.s. and within the Adiantopsis–Doryopteris clade. This group is described here as the new genus Mineirella. The new combinations for the genus and illustrations are included. Additionally, we discuss the morphological innovations that provide evidence to support the different clades.  相似文献   

10.
The phylogenetic relationships within the New and Old World hawk-eagle assemblage (genus Spizaetus ; Aves: Accipitridae) were studied using mitochondrial DNA sequences ( cytochrome b , control region). Eighty-four specimens representing all Spizaetus species and almost all currently distinguished subspecies as well as 11 other booted and non-booted 'eagle' genera from the Neotropics, Africa, Eurasia, South Asia and Australasia ( Oroaetus , Harpia , Morphnus , Lophaetus , Stephanoaetus , Hieraaetus , Aquila , Ictinaetus , Spilornis , Pithecophaga , Harpyopsis ) were investigated. Although the basal branching could not be resolved, our investigations clearly indicate that hawk-eagles represent a paraphyletic assemblage and thus their external similarities have to be ascribed to convergent evolution. The New World taxa of Spizaetus cluster together, but the South American species Oroaetus isidori appears embedded within this clade. The taxa from Southeast to East Asia form a clearly separated monophyletic group. It is further divided into two subgroups, which are also characterized by distinct juvenile plumage patterns. Spizaetus africanus , the only African representative of the genus, is found in a mixed cluster consisting of members of the genera Aquila and Hieraaetus . These findings are in accordance with previous studies of other authors based on various molecular markers and different sets of taxa, but disagree with current taxonomy. Therefore, we suggest assigning the species of the genus Spizaetus to three different genera: (1) Spizaetus (including Oroaetus isidori ) in Central and South America and (2) Nisaetus for the Southeast to East Asian group. (3) The African taxon ( Spizaetus africanus ) is discussed to be included into the genus Aquila. Furthermore, we propose to use the former genus name Lophotriorchis Sharpe, 1874, for the monotypic species Hieraaetus kienerii , which has an isolated phylogenetic position.  相似文献   

11.
Plant disjunctions have provided some of the most intriguing distribution patterns historically addressed by biogeographers. We evaluated the three hypotheses that have been postulated to explain these patterns [vicariance, stepping‐stone dispersal and long‐distance dispersal (LDD)] using Munroa, an American genus of grasses with six species and a disjunct distribution between the desert regions of North and South America. The ages of clades, cytology, ancestral characters and areas of distribution were investigated in order to establish relationships among species, to determine the time of divergence of the genus and its main lineages, and to understand further the biogeographical and evolutionary history of this genus. Bayesian inference recovered the North American M. pulchella as sister species to the rest. Molecular dating and ancestral area analyses suggest that Munroa originated in North America in the late Miocene–Pliocene (7.2 Mya; 8.2–6.5 Mya). Based on these results, we postulate that two dispersal events modelled the current distribution patterns of Munroa: the first from North to South America (7.2 Mya; 8.2–6.5 Mya) and the second (1.8 Mya; 2–0.8 Mya) from South to North America. Arid conditions of the late Miocene–Pliocene in the Neogene and Quaternary climatic oscillations in North America and South America were probably advantageous for the establishment of populations of Munroa. We did not find any relationship between ploidy and dispersal events, and our ancestral character analyses suggest that shifts associated with dispersal and seedling establishment, such as habit, reproductive system, disarticulation of rachilla, and shape and texture of the glume, have been important in these species reaching new areas. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 110–125.  相似文献   

12.
The genus Ptychopetulum (Olacaceae), disjunct between South America (2 spp.) and Africa (2 spp. West Africa; I sp. Rhodesia), exhibits predominantly diploporate pollen among the West African species and predominantly triporate pollen among the South American taxa. An analysis of aperture evolution suggests two possible schemes of aperture evolution for the genus. Scheme I avers the independent origin of both triporate and diploporate apertures from a basic brevicolpate condition while scheme II proposes a basic diploporate condition in which the diploporate apertures have migrated to the equator, fused to form brevicolpi and have ultimately become reduced to pores. Pollen evidence in support of both schemes is discussed. The distribution of aperture types within the genus also suggests West Africa as the original site of aperture evolution and South America as the second area of aperture development with types traceable to West African stock.  相似文献   

13.
Myrceugenia is a mainly temperate South American genus with two species on the Juan Fernández Islands, 12 in central and southern Chile and adjacent Argentina, and 25 in the highlands of southeastern Brazil and adjacent regions. The continental populations are separated by about 1000 km. Numerical cladistic procedures based on the criteria of parsimony, compatible characters and a combination of compatible characters and character correlation are used to deduce hypothetical phylogenetic undirected trees. These indicate that 3–8 groups of species bridge the continent of South America. An explanation of how the distribution of the genus could have come about is given based on: 1) the above mentioned numerical analyses, 2) the ecology of the species, 3) the distribution of other plant genera, and 4) theories of the geologic and climatic history of southern South America. Myrceugenia is hypothesized to have grown continuously across South America during the early Tertiary and to have become divided into eastern and western populations probably during the Miocene.  相似文献   

14.
The record of the genus Tapirus in South America is associated with the faunistic events of the Great American Biotic Interchange (GABI). The taxon is considered an immigrant of Holarctic origin. Although remains are scarce and incomplete during the Pleistocene, an analysis of these materials allowed us to consider valid seven fossil species : Tapirus tarijensis, T. cristatellus, T. greslebini, T. rioplatensis, T. oliverasi, T. mesopotamicus, and T. rondoniensis. A phylogenetic analysis was carried out in order to elucidate the relationships of the American fossil and extant species. Our result is consistent with a paraphyletic hypothesis for South American tapirs and suggests that a second dispersal event would have occurred from South America to North America, of a form closely related to T. cristatellus, resulting in the derived forms of North America.  相似文献   

15.
The Quercymegapodiidae, primitive galliforms resembling recent megapodes, have been described from the Upper Eocene of Quercy, France. They have also been identified in the Upper Oligocene–Lower Miocene of Brazil, where they are represented by the genus Ameripodius Alvarenga. A new species of this genus, Ameripodius alexis sp. nov., from the Lower Miocene of France, is described here. The occurrence of the same genus on both sides of the Atlantic Ocean emphasizes the similarities between South American and European avifaunas during the early Tertiary. New discoveries indicate that a similar avifauna was also present in North America, and that a characteristic association of taxa can be defined for the group that includes South America, North America and Eurasia. However, so far as is known, the same avifauna does not occur in contemporaneous African avifaunas.  相似文献   

16.
Aim The lizard genus Proctoporus Tschudi, 1845 was used as a model to test the South‐to‐North Speciation Hypothesis (SNSH) for species groups occurring in the Andes Mountains of South America. This hypothesis proposes that speciation of high Andean taxa followed a south‐to‐north pattern, generally coinciding with the progression of final uplift of the Andes. According to SNSH, a phylogenetic hypothesis of relationships of a taxonomic group occurring in the high Andes would show a branching pattern in which the southernmost species diverged first, followed by the more northern species, and so on in a northerly pattern. Location The central and northern Andes Mountains in South America. Methods A phylogenetic hypothesis was reconstructed for all species of the lizard genus Proctoporus by examining the external morphology of 341 individuals. This phylogeny was then examined to determine monophyly of the genus, distribution patterns of species groups, and congruence with SNSH. Results The genus Proctoporus did appear to be monophyletic and, therefore, it was valid to use this group to assess SNSH. The southernmost species were found to be the most basal, which was consistent with SNSH. The species occurring in the northern Andes did not exactly match the SNSH prediction. The Venezuelan and Trinidadian species did appear to be highly derived, as predicted by the hypothesis, but the Ecuadorian and Colombian species did not form a particular pattern in relation to the hypothesis. Main conclusions The SNSH does appear to have predictive power with regard to large‐scale distribution patterns. The finer‐scale patterns of speciation in the Andes, however, appear to be a more complex phenomenon that cannot be fully explained by a simple hypothesis. It is important to have a testable hypothesis in hand with which to compare data from disparate species groups. The incorporation of phylogenetic data of other high Andean taxa with similar distribution patterns is necessary to determine the full utility of SNSH in explaining evolutionary patterns in the Andes of South America.  相似文献   

17.
18.
The genus Kermadecia (Proteaceae), originally described as endemic to New Caledonia, has been expanded in recent decades to include three species from the New Hebrides and Fiji. Specialists on the Proteaceae have suggested that the three Melanesian species were generically misplaced, and careful reexamination supports this viewpoint. It is now apparent that a distinct group within the subfamily Grevilleoideae is composed of the genera Euplassa (endemic to South America), Sleumerodendron (a monotypic New Caledonian genus), Gevuina (based on a single South American species but recently expanded to include two other species from Queensland and New Guinea), and the three questionable Melanesian species. A review of this cluster of taxa indicates that Gevuina should again be interpreted as restricted to South America and that the generic name Bleasdalea F. v. Muell. ex Domin should be adopted for a group of five species extending from Queensland and New Guinea to the New Hebrides and Fiji. The relationships of the four genera are discussed and within Bleasdalea four new combinations are proposed: B. bleasdalei (F. v. Muell.), B. ferruginea (A. C. Sm.), B. vitiensis (Turrill), and B. lutea (Guillaumin). Kermadecia, very distinct from the four genera under present consideration, is again interpreted as a New Caledonian endemic.  相似文献   

19.
The genus Platycerium is one of the few pantropical epiphytic fern genera with six species in Afro-Madagascar, 8-11 Australasian species, and a single species in tropical South America. Nucleotide sequences of four chloroplast DNA markers are employed to reconstruct the phylogeny of these ferns and to explore their historical biogeography. The data set was designed to resolve conflicting hypotheses on the relationships within the genus that were based on previous phylogenetic studies exploring morphological evidence. Our results suggest a basal split of Platycerium into two well-supported clades. One clade comprises species occurring in Africa, Madagascar, and South America, whereas the second clade contains exclusively Australasian species. The latter clade is further divided into a clade corresponding to P. bifurcatum and its putative segregates and a clade of seven species occurring from Indochina throughout the Malesian region to New Guinea and Australia. The Afro-Madagascan clade includes a clade of two species found in tropical Africa and a clade of four species that includes three species endemic to Madagascar. The single neotropical species of this genus, P. andinum, is nested within the Afro-Madagascan clade but is not closely related to any extant species.  相似文献   

20.
A new marsupial from the early Eocene Tingamarra Local Fauna of southeastern Queensland, Australia, is named and referred to ChulpasiaCrochet and Sigé, 1993, a genus otherwise known from early Tertiary deposits of Peru. This taxon, Chulpasia jimthorselli nov. sp., differs in upper molar morphology only in minor details from the Peruvian type species Chulpasia mattaueri and is almost identical in size. New materials referable to the Tingamarra marsupial Thylacotinga bartholomaii Archer, Godthelp and Hand are also described. Species of Chulpasia and Thylacotinga share many striking derived as well as plesiomorphic dental features that allow recognition of a new monophyletic subfamily, Chulpasiinae. Its familial relationships are in doubt, but members of the subfamily could have provided the ancestral stock for Rosendolops and other early Tertiary South American polydolopimorphian marsupials. This is the first evidence that a Gondwanan genus of therian land mammals spanned South America, Antarctica and Australia during the early Tertiary. The very close similarity between the Peruvian and Australian fossils (and suggested short time span between their stratigraphic occurrences) provides further paleontological support for a trans-Antarctic land connection between South America and Australia extending well into the early Paleogene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号