首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
In previous experiments (Grotendorst et al, 1981), we showed that platelet-derived growth factor promotes the migration of smooth muscle cells in vitro. Using a "checkerboard" analysis, we now establish that platelet-derived growth factor (PDGF) acts as a true chemoattractant for cultured aortic smooth muscle cells. Other growth factors such as epidermal growth factor, fibroblast growth factor, and insulin are not chemoattractants. The chemotactic response occurs before the initiation of DNA synthesis and is not affected by inhibition of DNA synthesis. Chemotaxis occurs at levels of PDGF lower than required for mitogenesis. RNA and protein synthesis are required for the chemotactic response. As found previously in bacteria and leucocytes, we find that methylation reactions are required for the chemotactic response. The possibility is discussed that PDGF acts in vivo at sites of vascular injury to attract smooth muscle cells from the medial layer to the luminal surface, and is involved in the early stages of the formation of atherosclerotic plaques.  相似文献   

2.
Human fibroblasts were found to produce a potent mitogen and chemoattractant for fetal bovine aortic endothelial cells. Homogenates from AG1523 and AG1518 foreskin, CCD18Lu lung, and CCD18Co colon fibroblasts produced half-maximal stimulation of endothelial cell growth at concentrations of 1-7 micrograms/ml. The factor was purified from large-scale cultures of the CCD18Co fibroblasts using cation exchange chromatography and heparin-Sepharose chromatography. Such preparations were mitogenic for endothelial cells in vitro at concentrations of about 5-10 ng/ml, and promoted chemotaxis at 0.1-1 ng/ml. Heparinase treatment of the cells prevented the chemotactic response. These properties suggest that the factor may be related to fibroblast growth factor.  相似文献   

3.
Migration of neural cells to their final positions is crucial for the correct formation of the central nervous system. Several extrinsic factors are known to be involved in the regulation of neural migration. We asked if stem cell factor (SCF), well known as a chemoattractant and survival factor in the hematopoietic lineage, could elicit similar responses in neural stem cells. For that purpose, a microchemotaxis assay was used to study the effect of SCF on migration of neural stem cells from the embryonic rat cortex. Our results show that SCF-induced chemotaxis and that specific antibodies to SCF or tyrosine kinase inhibitors abolished the migratory response. The SCF-receptor, Kit, was expressed in neural stem cells and in their differentiated progeny. We also show that SCF is a survival factor, but not a mitogen or a differentiation factor for neural stem cells. These data suggest a role for SCF in cell migration and survival in the developing cortex.  相似文献   

4.
GDNF is a chemoattractant for enteric neural cells   总被引:13,自引:0,他引:13  
In situ hybridization revealed that GDNF mRNA in the mid- and hindgut mesenchyme of embryonic mice was minimal at E10.5 but was rapidly elevated at all gut regions after E11, but with a slight delay (0.5 days) in the hindgut. GDNF mRNA expression was minimal in the mesentery and in the pharyngeal and pelvic mesenchyme adjacent to the gut. To examine the effect of GDNF on enteric neural crest-derived cells, segments of E11.5 mouse hindgut containing crest-derived cells only at the rostral ends were attached to filter paper supports and grown in catenary organ culture. With GDNF (100 ng/ml) in the culture medium, threefold fewer neurons developed in the gut explants and fivefold more neurons were present on the filter paper outside the gut explants, compared to controls. Thus, in controls, crest-derived cells colonized the entire explant and differentiated into neurons, whereas in the presence of exogenous GDNF, most crest-derived cells migrated out of the gut explant. This is consistent with GDNF acting as a chemoattractant. To test this idea, explants of esophagus, midgut, superior cervical ganglia, paravertebral sympathetic chain ganglia, or dorsal root ganglia from E11.5-E12.5 mice were grown on collagen gels with a GDNF-impregnated agarose bead on one side and a control bead on the opposite side. Migrating neural cells and neurites from the esophagus and midgut accumulated around the GDNF-impregnated beads, but neural cells in other tissues showed little or no chemotactic response to GDNF, although all showed GDNF-receptor (Ret and GFRalpha1) immunoreactivity. We conclude that GDNF may promote the migration of crest cells throughout the gastrointestinal tract, prevent them from straying out of the gut (into the mesentery and pharyngeal and pelvic tissues), and promote directed axon outgrowth.  相似文献   

5.
Cyclic AMP (cAMP)is a natural chemoattractant of the social amoeba Dictyostelium discoideum. It is detected by cell surface cAMP receptors. Besides a signalling cascade involving phosphatidylinositol 3,4,5-trisphosphate (PIP3), Ca2+ signalling has been shown to have a major role in chemotaxis. Previously, we have shown that arachidonic acid (AA) induces an increase in the cytosolic Ca2+ concentration by causing the release of Ca2+ from intracellular stores and activating influx of extracellular Ca2+. Here we report that AA is a chemoattractant for D. discoideum cells differentiated for 8-9 h. Motility towards a glass capillary filled with an AA solution was dose-dependent and qualitatively comparable to cAMP-induced chemotaxis. Ca2+ played an important role in AA chemotaxis of wild-type Ax2 as ethyleneglycol-bis(b-aminoethyl)-N,N,N',N'-tetraacetic acid (EGTA) added to the extracellular buffer strongly inhibited motility. In the HM1049 mutant whose iplA gene encoding a putative Ins(1,4,5)P3 -receptor had been knocked out, chemotaxis was only slightly affected by EGTA. Chemotaxis in the presence of extracellular Ca2+ was similar in both strains. Unlike cAMP, addition of AA to a cell suspension did not change cAMP or cGMP levels. A model for AA chemotaxis based on the findings in this and previous work is presented.  相似文献   

6.
Previous studies have shown that catecholamines increase the nerve growth factor (NGF) content in medium conditioned by mouse L-M fibroblast cells and mouse astroglial cells. In this study, the NGF mRNA levels in these cells were measured by Northern blot analysis. In astroglial cells treated with epinephrine (EN), the cellular NGF mRNA level increased prior to accumulation of NGF in the culture medium. 3-Hydroxytyramine (DA) and norepinephrine (NE) also increased the cellular NGF mRNA content. An increased level of NGF mRNA elicited by EN was also observed in mouse L-M cells. These results indicate that catecholamines enhance NGF synthesis of L-M fibroblast cells and astroglial cells by increasing the cellular content of NGF mRNA. The present results also indicate that the effects of catecholamines are not mediated by adrenergic receptors.  相似文献   

7.
Astroglial cells cultured from the mouse brain have been found to synthesize and secrete a material(s) with nerve growth factor-like immunoreactivity (NGF-LI) into their culture medium. A material(s) with NGF-LI showed identical properties to those of beta NGF purified from the mouse submaxillary gland in immunoreactivity, molecular weight, isoelectric point, and neurite outgrowth stimulatory activity. These results indicate that astroglial cells cultured from mouse brain are able to synthesize and secrete beta NGF in culture.  相似文献   

8.
9.
Lin HY  Tang HY  Shih A  Keating T  Cao G  Davis PJ  Davis FB 《Steroids》2007,72(2):180-187
Thyroid hormone (l-thyroxine, T(4), or 3,5,3'-triiodo-l-thyronine, T(3)) treatment of human papillary and follicular thyroid cancer cell lines resulted in enhanced cell proliferation, measured by proliferating cell nuclear antigen (PCNA). Thyroid hormone also induced activation of the Ras/MAPK (ERK1/2) signal transduction pathway. ERK1/2 activation and cell proliferation caused by thyroid hormone were blocked by an iodothyronine analogue, tetraiodothyroacetic acid (tetrac), that inhibits binding of iodothyronines to the cell surface receptor for thyroid hormone on integrin alphaVbeta3. A MAPK cascade inhibitor at MEK, PD 98059, also blocked hormone-induced cell proliferation. We then assessed the possibility that thyroid hormone is anti-apoptotic. We first established that resveratrol (10 microM), a pro-apoptotic agent in other cancer cells, induced p53-dependent apoptosis and c-fos, c-jun and p21 gene expression in both papillary and follicular thyroid cancer cells. Induction of apoptosis by the stilbene required Ser-15 phosphorylation of p53. Resveratrol-induced gene expression and apoptosis were inhibited more than 50% by physiological concentrations of T(4). T(4) activated MAPK in the absence of resveratrol, caused minimal Ser-15 phosphorylation of p53 and did not affect c-fos, c-jun and p21 mRNA abundance. Thus, plasma membrane-initiated activation of the MAPK cascade by thyroid hormone promotes papillary and follicular thyroid cancer cell proliferation in vitro.  相似文献   

10.
Insulin-like growth factor binding proteins produced by cultured rat neurons, astrocytes, and rat cell lines BRL-3A and B104 were compared to binding proteins found in rat serum, using affinity labeling, deglycosylation, and Western ligand blotting studies. Each source elaborated an unique pattern of heterogeneous binding proteins. Some of the binding proteins from different sources behaved similarly in each experimental system suggesting that subsets of these binding proteins may be structurally related. In particular, our data suggest that cultured astrocytes and neurons make the major binding protein produced by BRL-3A cells.  相似文献   

11.
Role of fibronectin as a growth factor for fibroblasts   总被引:15,自引:4,他引:15       下载免费PDF全文
Fibroblast replication is regulated by exogenous signals provided by growth factors, mediators that interact with the target cell surface and signal the cell to proliferate. A useful model of growth regulation, the "dual control model," suggests that growth factors can be grouped either as competence factors or as progression factors, and that optimal replication of fibroblasts requires the presence of both types of growth factors. Although most growth factors are soluble mediators, recent studies have demonstrated that, for some cell types, the extracellular matrix can replace the requirement for a competence factor. Since fibronectin is an important constituent of the extracellular matrix that interacts with specific domains on the fibroblast surface, we examined the ability of fibronectin to act as a competence factor to promote the growth of human diploid fibroblasts. To accomplish this, fibronectins purified from two sources, human plasma and human alveolar macrophages, were tested for their ability to (a) stimulate fibroblast replication in serum-free medium containing characterized progression factors (insulin or alveolar macrophage-derived growth factor); (b) provide a growth-promoting signal early in G1. Fibronectin stimulated fibroblast replication in a dose-dependent manner in the presence of a fixed dose of a progression factor. Conversely, fibronectin conferred on previously unresponsive fibroblasts the ability to replicate in a dose-dependent manner when cultured with increasing amounts of a progression factor. Moreover, fibronectin signaled growth-arrested fibroblasts to traverse G1 approximately 4 h closer to S phase. No differences were observed in the ability of plasma or macrophage fibronectins to provide a competence signal for fibroblast replication. Since fibronectin is a major component of the extracellular matrix, these observations suggest that it may provide at least one of the signals by which the matrix conveys the "competence" that permits fibroblasts to replicate in the presence of an appropriate progression signal.  相似文献   

12.
In this study we show that insulin-like growth factor (IGF)-I selectively promotes survival and differentiation of amacrine neurons. In cultures lacking this factor, an initial degeneration pathway, selectively affecting amacrine neurons, led to no lamellipodia development and little axon outgrowth. Cell lysis initially affected 50% of amacrine neurons; those remaining underwent apoptosis leading to the death of approximately 95% of them by day 10. Apoptosis was preceded by a marked increase in c-Jun expression. Addition of IGF-I or high concentrations (over 1 microM) of either insulin or IGF-II to the cultures prevented the degeneration of amacrine neurons, stimulated their neurite outgrowth, increased phospho-Akt expression and decreased c-Jun expression. The high insulin and IGF-II concentrations required to protect amacrine cells suggest that these neurons depend on IGF-I for their survival, IGF-II and insulin probably acting through IGF-I receptors to mimic IGF-I effects. Inhibition of phosphatidylinositol-3 kinase (PI 3-kinase) with wortmannin blocked insulin-mediated survival. Wortmannin addition had similar effects to IGF-I deprivation: it prevented neurite outgrowth, increased c-Jun expression and induced apoptosis. These results suggest that IGF-I is essential for the survival and differentiation of amacrine neurons, and activation of PI 3-kinase is involved in the intracellular signaling pathways mediating these effects.  相似文献   

13.
Primary cultures of rat astroglial cells were maintained in a serum-free medium. After 8–10 days of cultivation the cells were exposed to an astroglial growth factor (AGF2) for short periods (1–120 min). Subsequently, uptake of22Na+ and42K+ into control and AGF2-pretreated cells was studied. Assay of the Na+ and K+ values in the cells was also performed by atomic absorption spectrometry. Treatment of rat astroglial cells with AGF2 resulted in a significant increase of the uptake of both Na+ and K+ depending on the duration of the exposure period. To reach the maximum increase of cation uptake, 6–10 min and 30 min of AGF2 pretreatment were needed for Na+ and K+, respectively. Amiloride blocked this increase of Na+ and K+ uptake elicited by AGF2 pretreatment, but the control cells were amiloride resistant. Treatment with AGF2 increased the ouabain sensitivity of the K+ uptake as that: 10–4 M ouabain inhibited K+ uptake of the AGF2-treated cells to the same degree as 5×10–3 M ouabain with the control cells. The Na+ uptake of AGF2-treated cells, however, exhibited no relevant changes in the presence of ouabain. A significant part of the AGF2-induced K+ uptake could be inhibited by both ouabain and amiloride, but a ouabain-resistant and amiloride-sensitive component also was revealed. The furosemide sensitivity of both Na+ and K+ uptake into cultured astroglial cells was also significantly increased by AGF2. Our findings suggest that short-term exposure of cultured glial cells to AGF2 induces these very early ionic events: 1) The appearance of a relevant amiloride-sensitive Na+/H+ exchange, and as a consequence of increased Na+ entry into the cells, secondary activation of the ouabain-sensitive K+ uptake via the Na+,K+-pump. 2) A direct effect of AGF2 on the Na+,K+-pump assembly in the membrane, resulting in increased Na+ sensitivity of the inner pump sites and enhanced ouabain sensitivity of the external K+-binding sites. 3) An increase of ouabain-resistant but amiloride- or furosemide-sensitive Na+ and K+ uptake.Some of the results reported here were presented as a lecture at a Symposium on Na+/H+ exchange of the Second European Congress on Cell Biology, Budapest, Hungary, 1986.  相似文献   

14.
Macrophage production of fibronectin, a chemoattractant for fibroblasts   总被引:22,自引:0,他引:22  
Activation of macrophages results in the production of numerous enzymes and effector molecules. One of these monokines released by macrophages can cause directed migration of connective tissue fibroblasts in vitro. Production of this macrophage-derived chemotactic factor for fibroblasts requires activation of the macrophages either in vivo or in vitro and de novo protein synthesis. The chemotactic activity in the macrophage supernatants could be removed by a fibronectin-specific affinity column and was inhibited in the presence of antibodies to fibronectin. Furthermore, chemotactic activity in the depleted macrophage supernatants could be restored by the addition of exogenous fibronectin. Fibronectin was identified in activated macrophage supernatants by an enzyme-linked immunoassay for fibronectin. From these findings it was concluded that activated macrophages release a chemoattractant for fibroblasts and that the primary chemoattractant molecule is fibronectin. The production of fibronectin by activated macrophages may thus serve as an inflammatory mediator that in addition to its other functions can recruit fibroblasts to an area of damaged tissue, where they can proliferate and form the scar tissue necessary for tissue repair. Furthermore, in chronic inflammation, the prolonged activation of macrophages may be related to the extensive fibroblast infiltration and fibrosis that can accompany these lesions.  相似文献   

15.
A new polypeptide mitogen has been detected at high specific activity in the rete testis fluid of rams (oRTF). The factor, which stimulates DNA synthesis in quiescent Swiss 3T3 cells, has a molecular weight of 45,000 as assessed by gel filtration through Ultrogel AcA 34. The factor is heat stable but is inactivated by proteolytic enzymes and by β-mercaptoethanol. The growth-promoting activity in oRTF does not bind to concanavalin A.  相似文献   

16.
Platelet-derived growth factor in chemotactic for fibroblasts   总被引:39,自引:18,他引:39       下载免费PDF全文
Chemotaxis assays in modified Boyden chambers were used to detect fibroblast chemoattractants in materials released from early-stage inflammatory cells, namely, mast cells, platelets, and neutrophils. Strong attractant activity was found in substances released from platelets. This activity was accounted for mainly by the platelet- derived growth factor (PDGF), which is released from the platelets and which was active as a chemoattractant at 0.5-1.0 mitogenic units/ml. The mitogenic activity of purified PDGF, measured by [3H]thymidine incorporation, occurs at a similar concentration range. By varying the gradient of PDGF, we demonstrated that PDGF stimulates chemotaxis rather than random motility. Preincubation of suspensions of fibroblasts in the presence of PDGF decreased the subsequent migration of cells to a gradient of PDGF as well as to a gradient of fibronectin, which is also in attractant for fibroblasts. The chemotactic response of fibroblasts to PDGF was not inhibited by hydroxyurea or azidocytidine but was inhibited by actinomycin D and cycloheximide, suggesting that synthesis of RNA and proteins but not of DNA is required for the chemotactic response to occur. Fibroblast growth factor, epidermal growth factor, nerve growth factor, and insulin were not chemotactic for human skin fibroblasts, suggesting that the chemoattractant activity of PDGF for fibroblasts is not a general property of growth factors and mitogens. These results suggest that PDGF could have two functions in wound healing: to attract fibroblasts to migrate into the clot and then to induce their proliferation.  相似文献   

17.
Several systems which generate persulfide sulfur promote in vitro proliferation of L1210 murine lymphoma cells. The systems include cysteine disulfides and pyridoxal, cystamine and diamine oxidase, beta-mercaptoalcohol disulfides and an alcohol dehydrogenase, and sulfide-treated proteins and a thiol. Persulfide sulfur is very unstable at pH near 7 and an essential feature of the growth-supporting systems is the ability to generate persulfide sulfur at a very low rate for long periods of time. Methyl disulfides (R--S--S--CH3) also support growth of L1210 cells and are more stable than persulfides (R--S--S--H). The requirement for these sulfur groups by L1210 cells may be related to the fact that these cells are defective in at least two enzymes of sulfur metabolism, cystathionase and 5'-methylthioadenosine phosphorylase. These findings provide the first evidence that persulfide sulfur may have a physiological role.  相似文献   

18.
Hepatocyte Growth Factor (HGF) is a pleiotropic factor, capable of evoking complex biological responses such as mitogenesis, motogenesis and morphogenesis in a variety of epithelial and endothelial cells. Nonetheless, the meaning of the acronym is consistent with the key role of the factor in liver regeneration, in vivo and in liver development during embryogenesis. The receptor for HGF is the tyrosine kinase encoded by the c-MET proto-oncogene. Upon ligand binding, the receptor kinase is activated by tyrosine autophosphorylation and recruits cytoplasmic transducers involved in HGF-triggered signal transduction. We investigated the role of HGF as a survival factor in protecting cells from apoptosis and we show that HGF is able to counteract staurosporin-induced apoptosis of epithelial cells.  相似文献   

19.
Transforming growth factor-beta 1 (TGF-beta 1) inhibited secretion of human hepatocyte growth factor (hHGF), which is also known as scatter factor or fibroblast-derived tumor cytotoxic factor, by MRC-5 cells. The effect was detectable at as little as 10 pg/ml and was more potent than that of dexamethasone. Complete inhibition was observed after 12 h in the presence of 5 ng/ml of TGF-beta 1. Phorbol 12-myristate 13-acetate-induced secretion of hHGF from human skin fibroblasts was also suppressed by TGF-beta 1. TGF-beta 2 inhibited hHGF secretion by MRC-5 cells to the same extent as TGF-beta 1, but other growth factors such as epidermal growth factor and acidic and basic fibroblast growth factors had only a slight or null inhibitory effect.  相似文献   

20.
Brain-derived neurotrophic factor (BDNF) promotes neuronal survival. Gaining an understanding of how BDNF, via the tropomyosin-related kinase B (TRKB) receptor, elicits specific cellular responses is of contemporary interest. Expression of mutant TrkB in fibroblasts, where tyrosine 484 was changed to phenylalanine, abrogated Shc association with TrkB, but only attenuated and did not block BDNF-induced phosphorylation of mitogen-activated protein kinase (MAPK). This suggests there is another BDNF-induced signaling mechanism for activating MAPK, which compelled a search for other TrkB substrates. BDNF induces phosphorylation of fibroblast growth factor receptor substrate 2 (FRS2) in both fibroblasts engineered to express TrkB and human neuroblastoma (NB) cells that naturally express TrkB. Additionally, BDNF induces phosphorylation of FRS2 in primary cultures of cortical neurons, thus showing that FRS2 is a physiologically relevant substrate of TrkB. Data are presented demonstrating that BDNF induces association of FRS2 with growth factor receptor-binding protein 2 (GRB2) in cortical neurons, fibroblasts, and NB cells, which in turn could activate the RAS/MAPK pathway. This is not dependent on Shc, since BDNF does not induce association of Shc and FRS2. Finally, the experiments suggest that FRS2 and suc-associated neurotrophic factor-induced tyrosine-phosphorylated target are the same protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号