首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural genes (melB) for the melibiose carrier of five mutants of Escherichia coli showing altered cation specificity for melibiose transport were cloned. The mutations were mapped in a 248-base-pair DNA fragment by a recombinational assay by using the mutants transformed with hybrid plasmids carrying various portions of the wild-type melB gene. The nucleotide sequences of the corresponding DNA fragments derived from mutated melB genes were determined, and the amino acid sequences of the carrier were deduced. Proline 122 was replaced with serine in the melibiose carrier of all five mutants (which were isolated independently). We conclude that this amino acid replacement caused the alteration in cation specificity (loss of coupling to H+) of the melibiose carrier.  相似文献   

2.
The melB gene coding for the melibiose carrier of Klebsiella pneumoniae was cloned and sequenced. There were two potential translation initiation sites. It was predicted that the melibiose carrier consists of 471 (or 467) amino acid residues. Seventy-eight percent of the 471 amino acids were identical to the Escherichia coli melibiose carrier. Sugar transport characteristics were studied using an E. coli mel- mutant expressing cloned K. pneumoniae melB gene. Accumulation of melibiose via the K. pneumoniae melibiose carrier was not stimulated by adding NaCl or LiCl which stimulates melibiose accumulation via the E. coli melibiose carrier. Lactose was accumulated only in the presence of LiCl. TMG (methyl-1-thio-beta-D-galactopyranoside) was accumulated in the absence of added NaCl or LiCl. The accumulation was stimulated by LiCl but not by NaCl. Rapid H+ uptake was observed when melibiose or TMG was added to cell suspensions. These results suggest that the preferred cation couplings via K. pneumoniae melibiose carrier are H(+)-melibiose, Li(+)-lactose, and H+/Li(+)-TMG. This coupling spectrum is quite different from that of the E. coli melibiose carrier. It is of special interest that the K. pneumoniae melibiose carrier seems to be lacking the ability to recognize Na+ which is a preferred coupling cation of the E. coli melibiose carrier for all known sugar substrates. Further investigation of these two carriers may give us insight into the Na+ recognition site.  相似文献   

3.
The melibiose carrier of Salmonella typhimurium is under the control of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). We isolated mutants of the melibiose carrier that showed resistance to inhibition via the PTS. Growth of the mutants on melibiose was not inhibited by 2-deoxyglucose, a non-metabolizable substrate of the PTS, although growth of the parent strain was inhibited. Transport activity of the melibiose carrier in the mutants was fairly resistant to inhibition by 2-deoxyglucose, although the activity in the parent was sensitive to inhibition. We cloned the mutated melB gene that encodes the melibiose carrier, determined the nucleotide sequences, and identified replaced nucleotides. The mutations resulted in substitutions of Asp-438 with Tyr, Arg-441 with Ser, or Ile-445 with Asn. All of these residues are in the COOH-terminal region of the carrier. The secondary structure of this region is predicted to be an alpha-helix, and the mutated residues were on the same side of the helix. This region showed sequence similarity to a region of the MalK protein, in which substitution of amino acid residues also resulted in PTS-resistant mutants. Thus the COOH-terminal portion of the melibiose carrier is important for the interaction of dephosphorylated IIIGlc, which is an entity causing reversible inactivation of the carrier.  相似文献   

4.
Escherichia coli K-12 strains in the absence of the lactose carrier grew on the disaccharide melibiose as the sole source of carbon. The presence of 0.1 mM Li+ in the medium strongly inhibited growth of such cells, and Li+-resistant mutants appeared after several days of incubation. These mutants showed altered cation coupling to melibiose transport via the melibiose carrier. Cotransport between H+ and melibiose was lost in the mutants, although Na+-melibiose cotransport was retained. We observed no Li+-melibiose cotransport. Therefore, these mutants represent a new type of cation-coupling mutants of the melibiose carrier.  相似文献   

5.
The nucleotide sequence of the melB gene coding for the melibiose carrier in Escherichia coli has been determined. The melibiose carrier is predicted to consist of 469 amino acid residues, resulting in a protein with a molecular weight of 52,029. The predicted carrier protein is highly hydrophobic (70% nonpolar amino acid residues). The hydropathic profile suggests that there are 10 long hydrophobic segments in the primary structure of the carrier protein. Most of them seem to traverse the membrane. Although the hydropathic profile of the melibiose carrier is similar to that of the lactose carrier as a whole, homology in the primary structure between the two carriers is very low. Furthermore, no homology in the nucleotide sequence is found in the structural genes for the two carriers. However, the nucleotide sequences of the intergenic regions are very similar between the melibiose operon and the lactose operon. There is a typical intercistronic regulatory sequence in the 3'-flanking region of the melB as well as in that of the lacY, which suggests the presence of another gene downstream of the melB.  相似文献   

6.
Revertants that showed normal cation recognition for melibiose transport were isolated from mutants with altered cation recognition (W3133-2S and W3133-2T) of Escherichia coli. Although the original two mutants possessed a second alteration, an increased activity of the Na+(Li+)/H+ antiporter, the revertants, which possessed the normal melibiose carrier, still showed altered properties of the Na+(Li+)/H+ antiporter. These results support the view that the alterations in the melibiose carrier and in the Na+(Li+)/H+ antiporter, observed in the mutants, are not genetically linked.  相似文献   

7.
The substrate binding reaction of the melibiose carrier was analyzed by studying [3H]p-nitrophenyl-alpha-D-galactopyranoside (Np alpha Gal) binding to de-energized membrane vesicles from Escherichia coli RA11 as a function of H+ and Na+ (or Li+) concentrations. The data indicate first that Na+ (or Li+) activates Np alpha Gal binding at all pH values tested between 5.5 and 7.5 and second that H+ inhibits the Na+ (or Li+)-dependent activating effect on Np alpha Gal binding. Similar conclusions were drawn for melibiose and methyl-1-thio-beta-D-galactoside binding activities. Unexpectedly, Np alpha Gal, melibiose, and methyl-1-thio-beta-D-galactoside binding activities are insensitive to a variety of SH reagents which completely block transport activity. Quantitative analysis of the effects of H+ and Na+ ions on the parameters of Np alpha Gal binding show that 1) the maximal number of binding sites is constant irrespective of the concentration of Na+ or Li+ in the range of pH between 6 and 7.5 and 2) the apparent dissociation constant for Np alpha Gal binding varies with both Na+ and H+ according to a relation described by a linear combination of the concentration of H+ and the reciprocal of Na+ concentration. These results can be accounted for by a model which assumes sequential binding of the cation and substrate in this order and competition between Na+ and H+ for a common cationic binding site on the porter. Predictions of the proposed binding model for a carrier mechanism catalyzing sugar transport according to a Na+ symport mode or a H+ symport mode are discussed.  相似文献   

8.
A lithium ion-selective electrode was constructed using N,N'-diheptyl-N,N'-5,5-tetramethyl-3,7-dioxanonandiamid as a Li+ ionophore. Lithium ion-sugar cotransport via the melibiose transport system was measured with this electrode. Influx of methyl-beta-D-thiogalactoside, methyl-alpha-D-galactoside, methyl-beta-D-galactoside, and D-galactose elicited uptake of Li+. This Li+ uptake was not observed when the melibiose carrier was not present in the cells or the carrier was inactivated. Melibiose caused a small amount of Li+ uptake, indicating that Li+-melibiose cotransport proceeds inefficiently. Raffinose, another substrate, did not cause detectable Li+ transport. In mutant cells which showed altered cation coupling (Niiya, S., Yamasaki, K., Wilson, T. H., and Tsuchiya, T. (1982) J. Biol. Chem. 257, 8902-8906), Li+-melibiose cotransport was clearly demonstrated. Alteration in substrate specificity was also shown in the mutants.  相似文献   

9.
Ding PZ  Wilson TH 《Biochemistry》2001,40(18):5506-5510
The melibiose carrier of Escherichia coli is a sugar-cation cotransport system that utilizes Na(+), Li(+), or H(+). This membrane transport protein consists of 12 transmembrane helices. Starting with the cysteine-less melibiose carrier, cysteine has been substituted individually for amino acids 17-37, which includes all of the residues in membrane helix I. The carriers with cysteine substitutions were studied for their transport activity and the effect of the water soluble sulfhydryl reagent p-chloro- mercuribenzenesulfonic acid (PCMBS). Cysteine substitution caused loss of transport activity in six of the mutants (G17C, K18C, D19C, Y32C, T34C, and D35C). PCMBS caused greater than 50% inhibition in eleven mutants (F20C, A21C, I22C, G23C, I24C, V25C, Y26C, M27C, Y28C, M30C, and Y31C). We suggest that the residues whose cysteine derivatives were inhibited by PCMBS face the aqueous channel and that helix I is completely surrounded by aqueous environment. Second site revertants were isolated from K18C and Y31C. The revertants were found to have mutations in helices I, IV, and VII.  相似文献   

10.
The lac Y genes from two Escherichia coli mutants, MAB20 and AA22, have been cloned in a multicopy plasmid by a novel 'sucrose marker exchange' method. Characterization showed that the plasmids express a lactose carrier with poor affinity for lactose. Neither mutant carried out concentrative uptake with methyl beta-D-galactopyranoside, lactose, or melibiose as the substrate. Nor did the mutants catalyze counterflow or exchange with methyl beta-D-galactopyranoside. Both mutants did, however, retain the capacity to carry out facilitated diffusion with lactose or melibiose. DNA sequencing revealed that MAB20 (histidine-322 to tyrosine) and AA22 (serine-306 to leucine) have amino acid substitutions within the putative 'charge-relay' domain thought to be responsible for proton transport. Galactoside-dependent H+ transport was readily measured in both mutants. We conclude, therefore, that the presence of a histidine residue at position 322 of the lactose carrier is not obligatory for H+ transport per se.  相似文献   

11.
The isolation and deduced amino acid sequence of 70 melibiose carrier mutants with impaired methyl-beta-D-galactopyranoside (TMG) and cation recognition properties is described. The Km for TMG transport ranged from 1 to greater than 100 mM. Amino acid substitutions occurred at 23 unique sites within the protein. These sites were clustered into four distinct regions: Asp-15 through Ile-18 (cluster I), Tyr-116 through Pro-122 (cluster II), Val-342 through Ile-348 (cluster III), and Ala-364 through Gly-374. Only two sites fell outside of these clusters: Ile-61 and Ala-236. In the native conformation, some or all of these clusters may interact to form the substrate recognition site. Impairment of TMG recognition was accompanied by decreased Li+ inhibition of melibiose transport in all but one mutant. That changes in sugar recognition properties should so frequently accompany changes in cation recognition properties suggests an interaction between the two substrates. A model for such interaction is proposed.  相似文献   

12.
The entry of Na+ or H+ into cells of Escherichia coli via the melibiose transport system was stimulated by the addition of certain galactosides. The principal cell used in these studies (W3133) was a lactose transport negative strain of E. coli possessing an inducible melibiose transport system. Such cells were grown in the presence of melibiose, washed, and incubated in the presence of 25 microM Na+. The addition of thiomethylgalactoside (TMG) resulted in a fall in Na+ concentration in the incubation medium. No TMG-stimulated Na+ movement was observed in uninduced cells. In an alpha-galactosidase negative derivative of W3133 (RA11) a sugar-stimulated Na+ uptake was observed in melibiose-induced cells on the addition of melibiose, thiodigalactoside, methyl-alpha-galactoside, methyl-beta-galactoside, and galactose, but not lactose. It was inferred from these studies that the substrates of the melibiose system enter the cell on the melibiose carrier associated with the simultaneous entry of Na+ when this cation is present in the incubation medium. Extracellular pH was measured in unbuffered suspensions of induced cells in order to study proton movement across the membrane of cells exposed to different galactosides. In the absence of external Na+ or Li+ the addition of melibiose or methyl-alpha-galactoside resulted in marked alkalinization of the external medium (consistent with H+-sugar cotransport). On the other hand TMG, thiodigalactoside, and methyl-beta-galactoside gave no proton movement under these conditions. When Na+ was present, the addition of TMG or melibiose resulted in acidification of the medium. This observation is consistent with the view that the entry of Na+ with TMG or melibiose carries into the cell a positive charge (Na+) which provides the driving force for the diffusion of protons out of the cell. It is concluded that the melibiose carrier recognition of cations differs with different substrates.  相似文献   

13.
The purpose of this research was to identify amino acid residues that mediate substrate recognition in the lactose carrier of Escherichia coli. The lactose carrier transports the alpha-galactoside sugar melibiose as well as the beta-galactoside sugar lactose. Mutants from cells containing the lac genes on an F factor were selected by the ability to grow on succinate in the presence of the toxic galactoside beta-thio-o-nitrophenylgalactoside. Mutants that grew on melibiose minimal plates but failed to grow on lactose minimal plates were picked. In sugar transport assays, mutant cells showed the striking result of having low levels of lactose downhill transport but high levels of melibiose downhill transport. Accumulation (uphill) of melibiose was completely defective in all of the mutants. Kinetic analysis of melibiose transport in the mutants showed either no change or a greater than normal apparent affinity for melibiose. PCR was used to amplify the lacY DNA of each mutant, which was then sequenced by the Sanger method. The following six mutations were found in the lacY structural genes of individual mutants: Tyr-26-->Asp, Phe-27-->Tyr, Phe-29-->Leu, Asp-240-->Val, Leu-321-->Gln, and His-322-->Tyr. We conclude from these experiments that Tyr-26, Phe-27, Phe-29 (helix 1), Asp-240 (helix 7), Leu-321, and His-322 (helix 10) either directly or indirectly mediate sugar recognition in the lactose carrier of E. coli.  相似文献   

14.
The melibiose carrier from Escherichia coli is a galactoside-cation symporter. Based on both experimental evidence and hydropathy analysis, 12 transmembrane helices have been assigned to this integral membrane protein. Transmembrane helix 2 contains several charged and polar amino acids that have been shown to be essential for the cation-coupled transport of melibiose. Starting with the cysteine-less melibiose carrier, we have individually substituted cysteine for amino acids 39-66, which includes the proposed transmembrane helix 2. In the resulting derivative carriers, we measured the transport of melibiose, determined the effect of the hydrophilic sulfhydryl reagent, p-chloromercuribenzenesulfonic acid (PCMBS), on transport in intact cells and inside out vesicles, and examined the ability of melibiose to protect the carrier from inactivation by the sulfhydryl reagent. We found a set of seven positions in which the reaction with the sulfhydryl reagent caused partial or complete loss of carrier function measured in intact cells or inside-out vesicles. The presence of melibiose protected five of these positions from reaction with PCMBS. The reaction of two additional positions with PCMBS resulted in the partial loss of transport function only in inside-out vesicles. Melibiose protected these two positions from reaction with the reagent. Together, the PCMBS-sensitive sites and charged residues assigned to helix 2 form a cluster of amino acids that map in three rows with each row comprised of every fourth residue. This is the pattern expected of residues that are part of an alpha-helical structure and thus the rows are tilted at an angle of 25 degrees to the helical axis. We suggest that these residues line the path of melibiose and its associated cation through the carrier.  相似文献   

15.
The mechanism of melibiose symport by the melibiose permease of Escherichia coli was investigated by further analyzing the Na+ (H+ or Li+)-coupled facilitated diffusion reactions catalyzed by the carrier in de-energized membrane vesicles, with particular emphasis on the reaction of sugar exchange at equilibrium. It is first shown that melibiose exchange at equilibrium proceeds without concomitant movement of Na+, i.e. the coupled cation is kinetically occluded during the melibiose exchange reaction. These results provide further experimental support for the model of Na+ sugar co-transport of the physiological substrate melibiose previously suggested (Bassilana, M., Pourcher, T., and Leblanc, G. (1987) J. Biol. Chem. 262, 16865-16870) in which: 1) the mechanisms of co-substrate binding to (or release from) the carrier are ordered processes on both the outer (Na+ first, sugar last) and inner membrane surfaces (sugar first, Na+ last) and give rise to a mirror-type model; 2) release of Na+ from the carrier on the inner membrane surface is very slow and rate-limiting for carrier cycling but is fast on the opposite side, contributing to the asymmetrical functioning of the permease. On the other hand, analysis of the exchange of identical sugars (homologous exchange) and different sugar analogs (heterologous exchange) indicates that the overall rate of sugar exchange reaction coupled to Na+ or Li+ is limited by the rate of one (or more) partial step(s) associated with the inflow of co-substrates and most probably by the rate of sugar release into the intravesicular medium. It is proposed that the variability of the facilitated diffusion reactions catalyzed by the carrier in the presence of different coupled cations and/or sugar analogs reflects variations in the rate of co-substrate release from the carrier on the inner membrane surface.  相似文献   

16.
Cation coupling to melibiose transport in Salmonella typhimurium.   总被引:2,自引:2,他引:0       下载免费PDF全文
Melibiose transport in Salmonella typhimurium was investigated. Radioactive melibiose was prepared and the melibiose transport system was characterized. Na+ and Li+ stimulated transport of melibiose by lowering the Km value without affecting the Vmax value; Km values were 0.50 mM in the absence of Na+ or Li+ and 0.12 mM in the presence of 10 mM NaCl or 10 mM LiCl. The Vmax value was 140 nmol/min per mg of protein. Melibiose was a much more effective substrate than methyl-beta-thiogalactoside. An Na+-melibiose cotransport mechanism was suggested by three types of experiments. First, the influx of Na+ induced by melibiose influx was observed with melibiose-induced cells. Second, the efflux of H+ induced by melibiose influx was observed only in the presence of Na+ or Li+, demonstrating the absence of H+-melibiose cotransport. Third, either an artificially imposed Na+ gradient or membrane potential could drive melibiose uptake in cells. Formation of an Na+ gradient in S. typhimurium was shown to be coupled to H+ by three methods. First, uncoupler-sensitive extrusion of Na+ was energized by respiration or glycolysis. Second, efflux of H+ induced by Na+ influx was detected. Third, a change in the pH gradient was elicited by imposing an Na+ gradient in energized membrane vesicles. Thus, it is concluded that the mechanism for Na+ extrusion is an Na+/H+ antiport. The Na+/H+ antiporter is a transformer which converts an electrochemical H+ gradient to an Na+ gradient, which then drives melibiose transport. Li+ was inhibitory for the growth of cells when melibiose was the sole carbon source, even though Li+ stimulated melibiose transport. This suggests that high intracellular Li+ may be harmful.  相似文献   

17.
cDNA cloning and sequence determination of pig gastric (H+ + K+)-ATPase   总被引:4,自引:0,他引:4  
Complementary DNA to pig gastric mRNA encoding (H+ + K+)-ATPase was cloned, and its amino acid sequence was deduced from the nucleotide sequence. The enzyme contained 1034 amino acid residues (Mr. 114,285) including the initiation methionine. The sequence of pig (H+ + K+)-ATPase was highly homologous with that of the corresponding enzyme from rat, but had high degree of synonymous codon changes. Potential sites of phosphorylation by cAMP-dependent protein kinase and N-linked glycosylation sites were identified. The amino terminal region contained a lysine-rich sequence similar to that of the alpha subunit of (Na+ + K+)-ATPase, although a cluster of glycine residues was inserted into the sequence of the (H+ + K+)-ATPase. As the pig enzyme is advantageous for biochemical studies, the information of the primary structure is useful for further detailed studies.  相似文献   

18.
The melibiose carrier from Escherichia coli is a cation-substrate cotransporter that catalyzes the accumulation of galactosides at the expense of H(+), Na(+), or Li(+) electrochemical gradients. Charged residues on transmembrane domains in the amino-terminal portion of this carrier play an important role in the recognition of cations, while the carboxyl portion of the protein seems to be important for sugar recognition. In the present study, we substituted Lys-377 on helix XI with Val. This mutant carrier, K377V, had reduced melibiose transport activity. We subsequently used this mutant for the isolation of functional second-site revertants. Revertant strains showed the additional substitutions of Val or Asn for Asp-59 (helix II), or Leu for Phe-20 (helix I). Isolation of revertant strains where both Lys-377 and Asp-59 are substituted with neutral residues suggested the possibility that a salt bridge exists between helix II and helix XI. To further test this idea, we constructed three additional site-directed mutants: Asp-59-->Lys (D59K), Lys-377-->Asp (K377D), and a double mutant, Asp-59-->Lys/Lys-377-->Asp (D59K/K377D), in which the position of these charges was exchanged. K377D accumulated melibiose only marginally while D59K could not accumulate. However, the D59K/K377D double mutant accumulated melibiose to a modest level although this activity was no longer stimulated by Na(+). We suggest that Asp-59 and Lys-377 interact via a salt bridge that brings helix II and helix XI close to one another in the three-dimensional structure of the carrier.  相似文献   

19.
The melibiose carrier of Escherichia coli is a cytoplasmic membrane protein that mediates the cotransport of galactosides with H+, Na+, or Li+. In this study we used cysteine-scanning mutagenesis to try to gain information about the position of transmembrane helix VI in the three-dimensional structure of the melibiose carrier. We constructed 23 individual cysteine substitutions in helix VI and an adjacent loop of the carrier. The resulting melibiose carriers retained 22–100% of their ability to transport melibiose. We tested the effect of the hydrophilic sulfhydryl reagent p-chloromercuri-benzenesulfonic acid (PCMBS) on the cysteine-substitution mutants and we found that there was no inhibition of melibiose transport in any of the mutants. We suggest that helix VI is imbedded in phospholipid and does not face the aqueous channel through which melibiose passes. Received: 6 March 2001/Revised: 14 May 2001  相似文献   

20.
The melibiose carrier from Escherichia coli is a sugar-cation cotransport system. Previously evidence was obtained that this integral membrane protein consists of 12 transmembrane helices. Starting with the cysteine-less melibiose carrier, cysteine has been substituted individually for amino acids 374–396, which includes all of the residues in the proposed helix XI. The carriers with cysteine substitutions were studied for their transport activity and the effect of the water soluble sulfhydryl reagent p-chloromercuribenzenesulfonic acid (PCMBS). Studies were carried out on both intact cells and inside out vesicles. Cysteine substitution caused loss of transport activity in seven of the mutants (K377C, G379C, A383C, F385C, L391C, G395C and Y396C). PCMBS produced more than 50% inhibition in six of the mutants (S380C, A381C, A384C, F387C, A388C and L391C). Preincubation of the cells with melibiose protected five of these residues from the inhibitory action of PCMBS. It was concluded that the residues whose cysteine derivatives were inhibited by PCMBS probably faced the aqueous channel. Received: 30 September 1999/Revised: 22 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号