首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The purpose of this study was to compare four different methods of normalising electromyograms (EMGs) recorded during normal gait. Comparisons were made between the amplitude, intra-individual variability and inter-individual variability of EMGs. Surface EMGs were recorded from the biceps femoris, semitendinosus, vastus lateralis and vastus medialis of ten males and two females while they walked on a treadmill at a self-selected speed. EMGs from the same muscles were subsequently recorded during isometric maximal voluntary contractions (MVCs) and concentric, isokinetic MVCs that were performed between 0.52 and 7.85 rad·s−1 on a BIODEX dynamometer. EMGs were also recorded during eccentric, isokinetic MVCs between 0.52 and 2.62 rad·s−1. Gait EMGs were then normalised at 2% intervals of the gait cycle by expressing them as a percentage of the following reference values: the mean (mean dynamic method) and the peak (peak dynamic method) EMG from the intra-individual ensemble average; the EMG from an isometric MVC (isometric MVC method); and the EMG from an isokinetic MVC that occurred with the same muscle action, length and velocity of musculotendinous unit as the gait EMGs (isokinetic MVC method). The isokinetic MVC method produced significantly greater (P<0.05) intra-individual variability compared to the other methods when it was measured using the variance ratio. Inter-individual variability of gait EMGs, again measured using the variance ratio, was also greatest when they were normalised using the isokinetic MVC method. The pattern and amplitude of EMGs normalised using the isometric MVC method and the isokinetic MVC method were very similar (root mean square difference and absolute difference both less than 3%). It was concluded that the isokinetic MVC method should not be adopted by gait researchers or clinicians as it does not reduce intra- or inter-individual variability anymore than existing normalisation methods, nor does it provide a more representative measure of muscle activation during gait than the isometric MVC method.  相似文献   

2.
The purpose of this study was to describe and examine the variations in recruitment patterns of motor units (MUs) in biceps brachii (BB) through a range of joint motion during dynamic eccentric and concentric contractions. Twelve healthy participants (6 females, 6 males, age = 30 ± 8.5 years) performed concentric and eccentric contractions with constant external loading at different levels. Surface electromyography (EMG) and mechanomyography (MMG) were recorded from BB. The EMGs and MMGs were decomposed into their intensities in time–frequency space using a wavelet technique. The EMG and MMG spectra were then compared using principal component analysis. Variations in total intensity, first principal component (PCI), and the angle θ formed by first component (PCI) and second component (PCII) loading scores were explained in terms of MU recruitment patterns and elbow angles. Elbow angle had a significant effect on dynamic concentric and eccentric contractions. The EMG total intensity was greater for concentric than for eccentric contractions in the present study. MMG total intensity, however, was lower during concentric than during eccentric contractions. In addition, there was no significant difference in θ between concentric and eccentric contractions for both EMG and MMG. Selective recruitment of fast MUs from BB muscle during eccentric muscle contractions was not found in the present study.  相似文献   

3.
These experiments were designed to study skeletal muscle pathology resulting from eccentric-biased exercise in rats. The effects on the muscles of running on a treadmill on a 0 degrees incline (similar amounts of concentric and eccentric contractions), down a 16 degrees incline (primarily eccentric contractions), and up a 16 degrees incline (primarily concentric contractions) at 16 m . min-1 for 90 min were assessed by following postexercise changes in 1) plasma creatine kinase and lactate dehydrogenase activities, 2) glucose-6-phosphate dehydrogenase (G-6-PDase) activity (bio- and histochemically) in the physiological extensor muscles, and 3) histological appearance of the muscles. The data indicate the following. 1) Whereas all exercise protocols resulted in elevations of plasma enzymes immediately after running, only eccentric exercise caused late phase elevations 1.5-2 days postexercise. 2) Significant increases in muscle G-6-PDase activity, which were always associated with accumulations of mononuclear cells, always occurred within some muscles of each extensor group 1-3 days following downhill and uphill running and did not occur following level running; the increases in activity were usually of lower magnitude in the muscles of uphill runners than in those of downhill runners; the deeply located, predominantly slow-twitch muscles were most affected by both down- and uphill running. 3) Muscle histology demonstrated localized disruption of normal banding patterns of some fibers immediately after exercise and accumulations of macrophages in the interstitium and in some (less than 5%) muscle fibers by 24 h postexercise in the deep slow muscles of the antigravity groups. Although the data generally indicated that eccentric exercise causes greater injury to the muscles, questions remain.  相似文献   

4.
The relationship between diaphragm electromyogram (EMG), isometric force, and length was studied in the canine diaphragm strip with intact blood supply and innervation under three conditions: supramaximal tetanic (100 Hz) phrenic nerve stimulation (STPS; n = 12), supramaximal phrenic stimulation at 25 Hz (n = 15), and submaximal phrenic stimulation at 25 Hz (n = 5). In the same preparation, the EMG-length relationship was also examined with direct muscle stimulation when the neuromuscular junction was blocked. EMG from three different sites and via two types of electrodes (direct or sewn-in and surface) were recorded during isometric contraction at different lengths. Direct EMGs were recorded from two bipolar electrodes sutured into the strip, one near its central end and the other near its costal end. A third EMG electrode configuration summed potentials from the whole strip by recording potentials between central and costal sites. Surface EMGs were recorded by a bipolar spring clip electrode that made contact with upper and lower surfaces of the muscle strip with light pressure. In all conditions of stimulation with different types of electrodes, all EMGs decreased significantly (P less than 0.05) when muscle length was changed from 50 to 120% of resting length (L0). Minimal and maximal force outputs were observed at 50 and 120% of L0, respectively, in all experiments. The results of this study indicated that the muscle length is a significant variable that affects the EMG recording and that the diaphragmatic EMG may not be an accurate reflection of phrenic nerve activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Electromyograms (EMGs) need to be normalized if comparisons are sought between trials when electrodes are reapplied, as well as between different muscles and individuals. The methods used to normalize EMGs recorded from healthy individuals have been appraised for more than a quarter of a century. Eight methods were identified and reviewed based on criteria relating to their ability to facilitate the comparison of EMGs. Such criteria included the magnitude and pattern of the normalized EMG, reliability, and inter-individual variability. If the aim is to reduce inter-individual variability, then the peak or mean EMG from the task under investigation should be used as the normalization reference value. However, the ability of such normalization methods to facilitate comparisons of EMGs is questionable. EMGs from MVCs can be as reliable as those from submaximal contractions, and do not appear to be affected by contraction mode or joint kinematics, particularly for the elbow flexors. Thus, the EMG from an isometric MVC is endorsed as a normalization reference value. Alternatively the EMG from a dynamic MVC can be used, although it is recognized that neither method is guaranteed to be able to reveal how active a muscle is in relation to its maximal activation capacity.  相似文献   

6.
The aim of this study was to evaluate the Kin-Com II dynamometer in the study of the stretch-shortening cycle (a concentric muscle action preceded by an eccentric muscle action). Measurements were made of plantar flexion at different angular velocities (120 degrees.s-1 and 240 degrees.s-1) with the knee at two different angles (0 degree and 90 degrees). Ten healthy women ranging in age from 22 to 41 years were studied. Torque values were recorded simultaneously with surface electromyograms (EMG): maximal voluntary concentric torque values were recorded and, after a short rest, the torque values of the concentric action which followed immediately after an eccentric action of the same velocity, both with maximal effort. Mean values were taken at different ankle positions and also averaged over different ranges. A concentric action preceded by an eccentric action generated a torque value on an average about 100% larger than a concentric action alone. The EMG activity was lower or unchanged. It was concluded that the present method could be useful in the study of the stretch-shortening cycle in plantar flexion and in the testing of the behaviour of the elastic components in people with disabilities in the lower limbs.  相似文献   

7.
To elucidate the influence of muscle length on surface EMG wave form, comparisons were made of surface EMGs of the biceps and triceps brachii muscles during isometric contractions at different muscle lengths. Muscle lengths were altered by setting the elbow joint angle at several intervals between the limits of extension and flexion. The intensity of the isometric contractions was 25% of maximum voluntary contraction at the individual joint angles. Slowing was obvious in the EMG wave forms of biceps as muscle length increased. The so-called 'Piper rhythm' appeared when the muscle was more than moderately lengthened. The slowing trend with muscle lengthening, though less marked, was also seen in triceps. Zero-cross analysis revealed quasi-linear relationships between muscle length and slowing. Frequency analysis confirmed the development of 'Piper rhythm'. An attempt was made to interpret the slowing associated with muscle lengthening in terms of the propagation of myoelectric signals in muscle fibers. given the effect of muscle length on EMG wave forms, a careful control of joint angle may be required in assessing local making fatigue when using EMG spectral indices.  相似文献   

8.
Portable amplifiers that record electromyograms (EMGs) for longer than four hours are commonly priced over $20,000 USD. This cost, and the technical challenges associated with recording EMGs during free-living situations, typically restrict EMG use to laboratory settings. A low-cost system (μEMG; OT Bioelecttronica, 100€), using specialized concentric bipolar electrodes, has been developed specifically for free-living situations. The purpose of this study was to validate the μEMG system by comparing EMGs from μEMG with a laboratory-based alternative (Telemyo 900; Noraxon USA, Inc.). Surface EMGs from biceps brachii (BB) and tibialis anterior (TA) of ten subjects were recorded simultaneously with both systems as subjects performed maximal voluntary contractions (MVCs), submaximal contractions at 25%, 50%, and 75% MVC, seven simulated activities of daily living (ADLs), and >60 min of simulated free-living inside the laboratory. In general, EMG parameters (e.g., average full-wave rectified EMG amplitude) derived from both systems were not significantly different for all outcome variables, except there were small differences across systems in baseline noise and absolute EMG amplitudes during MVCs. These results suggest that μEMG is a valid approach to the long-term recording of EMG.  相似文献   

9.
Physical performance deteriorates during strenuous exercise as manifested by a decrease in maximal aerobic power and increased activity of serum muscle enzymes. The relationship between these parameters was investigated in 41 trained subjects during 24 h marches and the following recovery period. Peak O2 uptake and serum activity of creatine phosphokinase (CPK) and glutamic oxalacetic transaminase (GOT) were measured. During the marches there was a simultaneous, significant elevation in serum CPK and GOT activity and a significant reduction in peak O2 uptake. During the early recovery period (24 h) no significant changes occurred in muscle enzyme activity and peak O2 uptake; thereafter (up to 72 h after the end of the march), a gradual decline in enzyme activity levels with a concomitant increase in peak O2 uptake was observed, reaching pre-march values. A "mirror image" relationship between muscle enzyme activity and peak O2 uptake was found during three clearly distinguished phases: a) 24 h march, b) early recovery stage and c) late recovery stage. These findings suggest that muscle enzyme leakage from muscle cells is closely related to the decline in muscular function and aerobic power. Thus, muscle enzyme activity might be a practical measure of physical performance capacity during the early and late stages of recovery from prolonged endurance exercise.  相似文献   

10.
The aim of this study was to compare the training stimuli of eccentric (lengthening) and concentric (shortening) contractions regarding the effect on signaling enzymes involved in protein synthesis. Ten male subjects performed 4 x 6 maximal eccentric contractions on one leg followed by 4 x 6 maximal concentric contractions on the other. Six additional subjects performed the same protocol, but with maximal concentric and submaximal eccentric exercise of equal force to that of the maximal concentric contractions. Muscle biopsy samples were taken from the vastus lateralis before, immediately after, and 1 and 2 h after exercise in both legs. The average peak force produced during the maximal eccentric exercise was 31% higher than during the maximal concentric exercise, 2,490 (+/-100) vs. 1,894 (+/-108) N (P < 0.05). The maximal eccentric contractions led to two- to eightfold increases in the phosphorylation of p70 S6 kinase (p70(S6k)) and the ribosomal protein S6 that persisted for 2 h into recovery but no significant changes in phosphorylation of Akt or mammalian target of rapamycin (mTOR). Maximal concentric and submaximal eccentric contractions did not induce any significant changes in Akt, mTOR, p70(S6k), or S6 phosphorylation up to 2 h after the exercise. The results indicate that one session of maximal eccentric contractions activates p70(S6k) in human muscle via an Akt-independent pathway and suggest that maximal eccentric contractions are more effective than maximal concentric contractions in stimulating protein synthesis in the absence of a nutritional intake, an effect that may be mediated through a combination of greater tension and stretching of the muscle.  相似文献   

11.
Training can improve muscle strength and endurance in 78- to 84-yr-old men.   总被引:1,自引:0,他引:1  
Nine men, 78-84 yr of age, participated in a dynamometer training program 2-3 times/wk, totaling 25 sessions, using voluntary maximal isometric, concentric, and eccentric right knee-extension actions (30 and 180 degrees/s). Measurements of muscle strength with a Kin-Com dynamometer and simultaneous electromyograms (EMG) were performed of both sides before and after the training period. Muscle biopsies were taken from the right vastus lateralis muscle. The total quadriceps cross-sectional area was measured with computerized tomography. Training led to an increase in maximal torque for concentric (10% at 30 degrees/s) and eccentric (13-19%) actions in the trained leg. The EMG activity increased at maximal eccentric activities. The total cross-sectional quadriceps area of the trained leg increased by 3%, but no changes were recorded in muscle fiber areas in these subjects, who already had large mean fiber areas (5.15 microns 2 x 10(3)). The fatigue index measured from 50 consecutive concentric contractions at 180 degrees/s decreased and the citrate synthase activity increased in all but one subject. The results demonstrate that increased neural activation accompanies an increase in muscle strength at least during eccentric action in already rather active elderly men and that muscle endurance may also be improved with training.  相似文献   

12.
The present study tested the hypotheses that Achilles tendon forces during fast concentric actions do not differ between extended and flexed knee positions, and this phenomenon is attributable to the force-length characteristics and electromyograms (EMGs) of gastrocnemius muscle. Seven healthy men performed static and concentric plantarflexions at fully extended (K0) and 0.785 rad (45 degrees ) flexed (K45) knee positions with the maximal effort. In concentric actions, the angular velocities were set at 0.524 (slow) and 6.109 rad s(-1) (fast). Fascicle length of medial gastrocnemius (MG) was determined with ultrasonography. Surface EMGs of the MG were recorded during each action. Achilles tendon force was calculated from the torque and moment arm of the tendon. Peak tendon forces in fast concentric actions were similar in K0 and in K45, but those in static and slow concentric actions significantly (P<0.05) differed between the two positions. When the tendon force peaked, the fascicle lengths in each action and fascicle velocities in both concentric actions were significantly (P<0.05) greater in K0 than in K45. The EMGs were significantly (P<0.05) higher in K0 than K45 during each action. The results suggest that (1) the difference in the tendon forces between the two positions can be explained by the force-length and -velocity characteristics and the EMGs of the MG, and (2) the contribution of the MG to the tendon force in flexed knee positions is greater in concentric actions than expected from the results in static actions.  相似文献   

13.
Determining the mechanisms of co-activation around the knee joint with respect to age and sex is important in terms of our greater understanding of strength development. The purpose of this study was to examine the effects of age, sex and muscle action on moment of force and electromyographic (EMG) activity of the agonist and antagonist muscle groups during isokinetic eccentric and concentric knee extension and flexion. The study comprised nine pubertal boys [mean age 12.6 (SD 0.5) years], nine girls [12.7 (SD 0.5) years] nine adult men [23.1 (SD 2.1) years] and nine adult women [23.7 (SD 3.1) years] who performed maximal isometric eccentric and concentric efforts of knee extensors and flexors on a dynamometer at 30 degrees x s(-1). The moment of force and surface EMG activity of vastus lateralis and biceps femoris muscles were recorded. The moment of force:agonist averaged EMG (aEMG) ratios were calculated. The antagonist aEMG values were expressed as a percentage of the aEMG activity of the same muscle, at the same angle, angular velocity and muscle action when the muscle was acting as agonist. Three-way analysis of variance (ANOVA) designs indicated no significant effects of age or sex on moment:aEMG ratios. Eccentric ratios were significantly higher than the corresponding concentric ones (P < 0.05). The results also indicated no significant effect of age and sex on the aEMG of the vastus lateralis and biceps femoris muscles when acting as antagonists. The antagonist aEMG was significantly greater during concentric agonist efforts compared with the corresponding eccentric ones (P < 0.05). These findings would suggest that the moment exerted per unit of agonist EMG and the antagonist activity are similar in children compared with adults and are not sex dependent. Future comparisons between eccentric and concentric moments of force and agonist ENG should take into consideration the antagonist effects, irrespective of age or sex.  相似文献   

14.
This study investigates whether knee position affects the amplitude distribution of surface electromyogram (EMG) in the medial gastrocnemius (MG) muscle. Of further concern is understanding whether knee-induced changes in EMG amplitude distribution are associated with regional changes in MG fibre length. Fifteen surface EMGs were acquired proximo-distally from the MG muscle while 22 (13 male) healthy participants (age range: 23–47 years) exerted isometric plantar flexion at 60% of their maximal effort, with knee fully extended and at 90 degrees flexion. The number of channels providing EMGs with greatest amplitude, their relative proximo-distal position and the EMG amplitude averaged over channels were considered to characterise changes in myoelectric activity with knee position. From ultrasound images, collected at rest, fibre length, pennation angle and fat thickness were computed for MG proximo-distal regions. Surface EMGs detected with knee flexed were on average five times smaller than those collected during knee extended. However, during knee flexed, relatively larger EMGs were detected by a dramatically greater number of channels, centred at the MG more proximal regions. Variation in knee position at rest did not affect the proximo-distal values obtained for MG fibre length, pennation angle and fat thickness. Our main findings revealed that, with knee flexion: i) there is a redistribution of activity within the whole MG muscle; ii) EMGs detected locally unlikely suffice to characterise the changes in the neural drive to MG during isometric contractions at knee fully extended and 90 degrees flexed positions; iii) sources other than fibre length may substantially contribute to determining the net, MG activation.  相似文献   

15.
Eccentric exercise often produces severe muscle damage, whereas concentric exercise of a similar load elicits a minor degree of muscle damage. The cellular events initiating muscle damage are thought to include an increase in cytosolic Ca. It was hypothesized that eccentric muscle activity in humans would lead to a larger degree of cell damage and increased intracellular Ca accumulation in skeletal muscle than concentric activity would. Furthermore, possible differences between men and women in muscle damage were investigated following step exercise. Thirty-three healthy subjects (18 men and 15 women) participated in a 30-minute step exercise protocol involving concentric contractions with 1 leg and eccentric contractions with the other leg. Muscle Ca content, maximal voluntary contraction (MVC), and muscle enzymes in the plasma were measured. In a subgroup of the subjects, T2 relaxation time was measured by magnetic resonance imaging. No significant changes were found in muscle Ca content in vastus lateralis biopsy specimens in women or in men. Following step exercise, MVC decreased in both legs of both genders. The women had a significantly larger strength decrease in the eccentric leg than the men had on postexercise day 2 (p < 0.01). Plasma creatine kinase increased following step exercise, with a sevenfold higher response in women than in men on day 3 (p < 0.001). The women, but not the men, had an increase in T2 relaxation time in the eccentrically working adductor magnus muscle, peaking on day 3 (75%) (p < 0.001). In conclusion, step exercise does not lead to Ca accumulation in the vastus lateralis but does induce muscle damage preferentially in the eccentrically working muscles, considerably more in women than in men. This indicates that gender-specific step training programs may be warranted to avoid excessive muscle damage.  相似文献   

16.
Increases in liver glycogen phosphorylase activity, along with inhibition of glycogen synthetase and phosphofructokinase-1, are associated with elevated cryoprotectant (glucose) levels during freezing in some freeze-tolerant anurans. In contrast, freeze-tolerant chorus frogs, Pseudacris triseriata, accumulate glucose during freezing but exhibit no increase in phosphorylase activity following 24-h freezing bouts. In the present study, chorus frogs were frozen for 5- and 30-min and 2- and 24-h durations. After freezing, glucose, glycogen, and glycogen phosphorylase and synthetase activities were measured in leg muscle and liver to determine if enzyme activities varied over shorter freezing durations, along with glucose accumulation. Liver and muscle glucose levels rose significantly (5-12-fold) during freezing. Glycogen showed no significant temporal variation in liver, but in muscle, glycogen was significantly elevated after 24 h of freezing relative to 5 and 30 min-frozen treatments. Hepatic phosphorylase a and total phosphorylase activities, as well as the percent of the enzyme in the active form, showed no significant temporal variation following freezing. Muscle phosphorylase a activity and percent active form increased significantly after 24 h of freezing, suggesting some enhancement of enzyme function following freezing in muscle. However, the significance of this enhanced activity is uncertain because of the concurrent increase in muscle glycogen with freezing. Neither glucose 6-phosphate independent (I) nor total glycogen synthetase activities were reduced in liver or muscle during freezing. Thus, chorus frogs displayed typical cryoprotectant accumulation compared with other freeze-tolerant anurans, but freezing did not significantly alter activities of hepatic enzymes associated with glycogen metabolism.  相似文献   

17.
The purpose of this study was to investigate the influence of eccentric contractions (ECC) on the biceps (BB) and triceps brachii (TB) muscles during maximal voluntary contraction (MVC) of elbow flexors using electrical (EMG) and mechanomyographical activities (MMG). Each of 18 male students performed 25 submaximal contractions (50% MVC) of the elbow flexors. Root mean square amplitude (RMS) and median frequency (MDF) were calculated for the EMG and MMG signals recorded during MVC. All measurements were taken before, immediately after, 24, 48, 72, and 120 h post-ECC from the BB and TB muscles. MVC was reduced by 34% immediately after exercise and did not return to the resting value within 120 h (P0.05). The EMG MDF decreased significantly (P< or =0.05) in both muscles after ECC. The MMG RMS at 24h, 48, 72 and 120 h post-ECC was significantly lower compared to that recorded immediately after ECC in both muscles (P< or =0.05). The present research showed that (i) there were similar changes in electrical and mechanical activities during MVC after submaximal ECC in agonist and antagonist muscles suggesting a common drive controlling the agonist and antagonist motoneuron pool, (ii) the ECC induced different changes in EMG than in MMG immediately after ECC and during 120 h of recovery that suggested an increased tremor and contractile impairments, i.e., reduced rate of calcium release from the sarcoplasmic reticulum (acute effect), and changes in motor control mechanisms of agonist and antagonist muscles, and increased muscle stiffness (chronic effect).  相似文献   

18.
The purpose of this study was to determine the effect of eccentric exercise on the ability to exert steady submaximal forces with muscles that cross the elbow joint. Eight subjects performed two tasks requiring isometric contraction of the right elbow flexors: a maximum voluntary contraction (MVC) and a constant-force task at four submaximal target forces (5, 20, 35, 50% MVC) while electromyography (EMG) was recorded from elbow flexor and extensor muscles. These tasks were performed before, after, and 24 h after a period of eccentric (fatigue and muscle damage) or concentric exercise (fatigue only). MVC force declined after eccentric exercise (45% decline) and remained depressed 24 h later (24%), whereas the reduced force after concentric exercise (22%) fully recovered the following day. EMG amplitude during the submaximal contractions increased in all elbow flexor muscles after eccentric exercise, with the greatest change in the biceps brachii at low forces (3-4 times larger at 5 and 20% MVC) and in the brachialis muscle at moderate forces (2 times larger at 35 and 50% MVC). Eccentric exercise resulted in a twofold increase in coactivation of the triceps brachii muscle during all submaximal contractions. Force fluctuations were larger after eccentric exercise, particularly at low forces (3-4 times larger at 5% MVC, 2 times larger at 50% MVC), with a twofold increase in physiological tremor at 8-12 Hz. These data indicate that eccentric exercise results in impaired motor control and altered neural drive to elbow flexor muscles, particularly at low forces, suggesting altered motor unit activation after eccentric exercise.  相似文献   

19.
The present study investigated changes in indirect markers of muscle damage following a simulated tennis match play using nationally ranked young (17.6 ± 1.4 years) male tennis players. Ten young athletes played a 3-hour simulated match play on outdoor red clay courts following the International Tennis Federation rules. Muscle soreness, plasma creatine kinase activity (CK), serum myoglobin concentration (Mb), one repetition maximum (1RM) squat strength, and squat jump (SJ) and counter movement jump (CMJ) heights were assessed before, immediately after, and 24 and 48 h after the simulated match play. All parameters were also evaluated in a non-exercised group (control group). A small increase in the indirect markers of muscle damage (muscle soreness, CK and Mb) was detected at 24-48 hours post-match (p < 0.05). A marked acute decrement in neuromuscular performance (1RM squat strength: -35.2 ± 10.4%, SJ: -7.0 ± 6.0%, CMJ: -10.0 ± 6.3%) was observed immediately post-match (p < 0.05). At 24 h post-match, the 1RM strength and jump heights were not significantly different from the baseline values. However, several players showed a decrease of these measures at 24 h after the match play. The simulated tennis match play induced mild muscle damage in young players. Coaches could monitor changes in the indirect markers of muscle damage to assess athletes’ recovery status during training and competition.  相似文献   

20.
This study was aimed to analyze the loss of muscle explosive force in the early phase of eccentric exercise-induced damage, and its possible relationships with muscle soreness and blood creatine kinase (CK) levels. Squat jump (SJ) and countermovement jump (CMJ) heights decreased in response to an eccentric exercise (120 eccentric actions of the knee extensors), with reductions that persisted at least for 24 h. The SJ/CMJ ratio was not significantly modified. Blood CK levels changed significantly over time and CK activity was significantly higher at 6 and at 24 h when compared to values obtained immediately after the eccentric exercise. Muscle soreness perceived at 6 h was slightly higher than that experienced just after finalizing the exercise and reached a clearly upper value at 24 h. A highly significant relationship between SJ and CMJ height loss was observed. CK activity at 24 h was significantly related to the SJ height loss at 6 h and to both the SJ height loss and the CMJ height loss immediately after the exercise. In summary, eccentric exercise induced a reduction in the explosive force generating capacity that affected in a similar way the pure concentric jump (SJ) and the jump eliciting the stretch-shortening cycle (CMJ). Results obtained suggest that CK activity is a better predictor of explosive force reduction than soreness, at least when values close to the peak are used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号