首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulomonas sp. isolated from soil produces a high level of α-mannosidase (α-mannanase) inductively in culture fluid. The enzyme had two different molecular weight forms, and the properties of the high-molecular-weight form were reported previously (Takegawa, K. et al.: Biochim. Biophys. Acta, 991, 431–437, 1989). The low-molecular-weight α-mannosidase was purified to homogeneity by polyacrylamide gel electrophoresis. The molecular weight of the enzyme was over 150,000 by gel filtration. Unlike the high-molecular-weight form, the low-molecular-weight enzyme readily hydrolyzed α-1,2- and α-1,3-linked mannose chains.  相似文献   

2.
The extracellular adenylate cyclase of Bordetella pertussis was partially purified and found to contain high- and low-molecular-weight species. The high-molecular-weight form had a variable molecular weight with a peak at about 700,000. The smaller species had a molecular weight of 60 to 70,000 as determined by gel filtration. The low-molecular-weight form could be derived from the high-molecular-weight species. The high-molecular-weight complex purified from the cellular supernatant was highly stimulated by calmodulin, while the low-molecular-weight enzyme was much less stimulated. Active enzyme could be recovered from sodium dodecyl sulfate (SDS) gels at positions corresponding to molecular weights of about 50,000 and 65,000. Active low-molecular-weight enzyme recovered from SDS gels migrated with a molecular weight of about 50,000, which coincides with a coomassie blue-stained band. However, when both high- and low-molecular weight preparations were analyzed in 8 M urea isoelectrofocusing gels, the enzyme activity recovered did not comigrate with stained protein bands. The enzyme recovered from denaturing isoelectrofocusing or SDS gels was activated by calmodulin, indicating a direct interaction of calmodulin and enzyme. The high-molecular-weight form of the enzyme showed increasing activity with calmodulin concentrations ranging from 0.1 to 500 nM, while the low-molecular-weight form was fully activated by calmodulin at 20 nM. Adenylate cyclase on the surface of living cells was activated by calmodulin in a manner which resembled that found for the high-molecular-weight form.  相似文献   

3.
We have previously reported that estrogens have the potential to induce new forms of renin substrate in addition to elevating the major circulating form of this protein. One of these estrogen-induced forms had a molecular weight in excess of 150,000. In this study we have compared the plasma concentration of the high-molecular-weight renin substrate in normotensive women receiving estrogen therapy and women with estrogenic hypertension. A statistically significant elevation of this protein was associated with estrogenic hypertension and normotensive pregnant women at term. This form of renin substrate differed from the major form with respect to electrophoretic mobility, isoelectric point, and immunologic cross-reactivity. In addition, kinetic analysis indicated that this high-molecular-weight substrate has a significantly higher affinity for the enzyme renin than the major circulating form (Km = 1800 +/- 290 versus 3520 +/- 260 ng angiotensin I equivalents/ml). These results suggest that in addition to renin substrate concentration, substrate composition may play an important role in blood pressure regulation.  相似文献   

4.
Mucor fragilis grown on bovine blood powder as the sole carbon source abundantly produced beta-N-acetylhexosaminidase. The enzyme activity was several times higher than that of a culture obtained with glucose medium. The enzyme had two different molecular weight forms. The high-molecular-weight form had somewhat higher beta-N-acetylgalactosaminidase activity than the lower-molecular-weight enzyme which had beta-N-acetylgalactosaminidase activity equivalent to about 40% of its beta-N-acetylglucosaminidase activity. Bovine blood seemed to induce both enzymes, but N-acetylamino sugars specifically induced the low-molecular-weight form. N-Acetylgalactosamine had an especially marked effect on activity. The low-molecular-weight form of enzyme was purified from the culture filtrate by fractionation with ammonium sulfate and various column chromatographies. The purified enzyme was found to be homogeneous by polyacrylamide gel electrophoresis. The optimum pH was 4.0 to 5.0 for beta-N-acetylglucosaminidase activity and 5.5 to 6.5 for beta-N-acetylgalactosaminidase activity. The enzyme hydrolyzed natural substrates such as di-N-acetylchitobiose, tri-N-acetylchitotriose, and a glycopeptide obtained by modification of fetuin.  相似文献   

5.
Two forms of renin, one of mol.wt. 43,000 and the other 60,000, were found in the dog kidney. Conversion between the two forms of renin was reversible at neutral pH. Though the molecular weight of renin in kidney-cortex homogenate was 43,000, it was completely converted into high-molecular-weight renin in the presence of substances that react with thiol groups. On the contrary, stored renin in the granules was the form of normal size (mol. wt. 43,000) regardless of the absence or presence of such substances. The present experiments indicated that renin is stored in the granules as the form of normal size and might be converted into high-molecular-weight renin when it is released from the granules and attached to some substance in the soluble fraction of renal-cortical tissue.  相似文献   

6.
The Chinese hamster ovary (CHO) aminoacyl-tRNA synthetase mutants Gln-2, His-1, and Lys-101 were analyzed for alterations in respective particulate enzyme forms. The mutant Gln-2 showed a preferential loss of the lower molecular weight enzyme form for glutamine. His-1 showed alterations of the enzyme complexes for several other aminoacyl-tRNA activities but only decreased activity for itself. The mutant Lys-101 only showed an altered Lysyl-tRNA synthetase. These results provide evidence for a model of the intracellular role of the aminoacyl-tRNA synthetase complexes wherein the high molecular weight forms utilize amino acids directly from the extracellular pool while the low molecular weight forms utilize intracellular pools.  相似文献   

7.
Evidence is presented that although many proteins from the fronds of Lemna minor L. undergo enhanced degradation during osmotic stress, ribulose-1,5-bisphosphate carboxylase (RuBPCase) is not degraded. Instead RuBPCase is converted in a series of steps to a very high-molecular-weight form. The first step involves the induction of an oxidase system which after 24 h of stress converts RuBPCase to an acidic and catalytically inactive form. Subsequently, the oxidised RuBPCase protein is gradually polymerized to a number of very large aggregates (molecular weight of several million).The conversion of RuBPCase to a high-molecular-weight form appears to be correlated with (i) a reduction in the number of-SH residues and (ii) the susceptibility to in-vitro proteolysis. Indeed, the number of-SH groups per RuBPCase molecule decreases from 89 in the native enzyme to 54 and 22 in the oxidised and polymerized forms, respectively. On the other hand, the oxidised enzyme is more susceptible to in-vitro proteolysis than the native form. However, it is the polymerized form of RuBPCase which is particularly susceptible to in-vitro proteolysis.Western-blotting experiments and anti-ubiquitin antibodies were used to detect the presence of ubiquitin conjugates in extracts from osmotically stressed Lemna fronds. The possible involvement of ubiquitin in the formation of the aggregates is discussed.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic acid - FPLC fast protein liquid chromatography - kDa kilodaltons - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsulphonyl fluoride - RuBPCase ribulose bisphosphate carboxylase - SDS sodium dodecyl sulphate - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

8.
The specific activity and molecular forms of NAD-kinase during ontogenesis of Neurospora crassa were investigated. The specific activity of the enzyme increased drastically at critical stages of fungal development, i.e. during conidia germination and during transition from the logarithmic to stationary growth stage, reaching 85 nmole NADP/hr/mg protein. By polyacrylamide gel electrophoresis four forms of NAD-kinase were revealed that had the following molecular masses: I-338,000, II-306,000, III-229,000, and IV-203,000. The vegetative mycelium contained predominantly form III, and conidia showed a high content of high-molecular-weight forms I and II.  相似文献   

9.
1) Two forms of acid beta-galactosidase [EC 3.1.23] with different molecular weights catalyzing the hydrolysis of GM1-ganglioside and p-nitrophenyl-beta-D-galactoside were separated and purified from porcine spleen. 2) The apparent molecular weights were 400,000-600,000 and 70,000-74,000 for the high (termed Am form) and low (termed A1 form) molecular weight forms, respectively. 3) On examination by sodium dodecyl sulfate (SDS)/polyacrylamide gel electrophoresis, both forms of the enzyme had a common protein band of molecular weight 63,000, and the Am form showed three additional protein bands with molecular weights of 31,000, 21,000, and 20,000. 4) Both forms of the enzyme had similar catalytic functions with regard to pH-optimum, Km, substrate specificity and sensitivity to substrate analogues and other substances such as detergents, bovine serum albumin (BSA) and NaCl. 5) Both forms of the enzyme were fairly stable upon preincubation at 45 degrees C at acidic pH (pH 4.5), but lost their activities at neutral pH (pH 7.0). 6) The A1 form was a monomer at neutral pH (pH 7.0) and formed a dimer at acidic pH (pH 4.5). However, most of the Am form could not be converted to a dimeric form on gel filtration at acidic pH.  相似文献   

10.
The cytoplasmic nitrate reductase in heme mutant H-14 of Staphylococcus aureus was partially purified by steps which included ammonium sulfate fractionation and chromatography on Bio-Gel A 1.5m and ion-exchange columns. The active fractions from the ion-exchange columns showed two forms of the enzyme upon electrophoresis in nondenaturing gels of polyacrylamide; these corresponded to proteins of R(f) 0.16 and 0.28. Each form contained a predominant polypeptide of molecular weight 140,000, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The R(f) 0.16 form contained another major polypeptide of molecular weight 57,000, but the R(f) 0.28 form contained several other polypeptides. The sedimentation properties of the enzyme were examined after partial purification on Bio-Gel A 1.5m. In sucrose gradients containing Triton X-100 the enzyme sedimented as a homogeneous peak with an estimated molecular weight of 225,000; without detergent a heterogeneous profile was observed of molecular weight greater than 250,000. Treatment of the enzyme with trypsin increased the specific activity, and the enzyme sedimented as a homogeneous peak in sucrose gradients without Triton X-100, with an estimated molecular weight of 202,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that trypsin treatment converted the polypeptide of molecular weight 140,000 to a polypeptide of molecular weight 112,000. We conclude that the cytoplasmic nitrate reductase of S. aureus has a large subunit of molecular weight 140,000, which can be modified by trypsin to a polypeptide of molecular weight 112,000 without loss of catalytic activity.  相似文献   

11.
Dopamine beta-hydroxylase exists as three forms in human neuroblastoma (SH-SY5Y) cells. The membrane-bound form of the hydroxylase contains three different species with apparent relative molecular weights of 73,000, 77,000, and 82,000. The intracellular soluble form of dopamine beta-hydroxylase was present as a single species with an apparent molecular weight of 73,000. Pulse-chase experiments showed that membranous dopamine beta-hydroxylase contains two subunit forms of 73,000 and 77,000 after short chase times. The soluble hydroxylase was synthesized as a single species of 73,000 at approximately the same rate as the lower molecular weight species of the membranous enzyme. A constitutively secreted third form of the enzyme with an intermediate apparent molecular weight also incorporated [35S]sulfate, whereas no significant amount of [35S]sulfate was observed in the cellular forms of the enzyme. The [35S]sulfate was incorporated on N-linked oligosaccharides. Approximately 12% of the enzyme is released constitutively within 1 h. These results demonstrate that neuronal cells have the ability to constitutively secrete a specific form of dopamine beta-hydroxylase which may contribute to the levels of this enzyme found in plasma.  相似文献   

12.
In this study we have demonstrated that the rat sperm acrosomal beta-d-galactosidase is expressed in late spermatocytes and spermatids (round, elongated/condensed) during spermatogenesis. The enzyme is an exoglycohydrolase which, along with other exoglycohydrolases and proteases, is thought to aid in penetration of the zona pellucida, the extracellular glycocalyx that surrounds the mammalian egg. The presence of the enzyme in spermatocytes was confirmed by multiple approaches using biochemical, biosynthetic, and immunohistochemical protocols. The germ cells (spermatocytes, round spermatids, and elongated/condensed spermatids), purified from rat testis, were found to contain beta-galactosidase and four other glycohydrolases (beta-d-glucuronidase, alpha-d-mannosidase, alpha-l-fucosidase, and beta-N-acetylglucosaminidase). With the exception of alpha-l-fucosidase, the other enzymes assayed demonstrated a two- to threefold higher activity per cell in spermatocytes than in round spermatids. Immunoblotting approaches of affinity-purified germ cell extracts demonstrated several molecular forms of beta-galactosidase in spermatocytes and round spermatids; one of these forms (62 kDa) was seen only in round spermatids. The biosynthetic approach demonstrated that the enzyme is synthesized in spermatocytes and round spermatids in culture in high-molecular-weight precursor forms (90/88 kDa) which undergo processing to lower molecular weight mature forms in a cell-specific manner. The net result is the formation of predominantly 64- and 62-kDa forms in spermatocytes and round spermatids, respectively. The conversion of precursor forms to mature forms in the diploid and haploid cells in culture is rapid with t(1/2) of 6.5 and 9.0 h, respectively. Immunohistochemical approaches revealed an immunopositive reaction in the Golgi membranes, Golgi-associated vesicles, and lysosome-like structures in the late spermatocytes and early round spermatids. The forming/formed acrosome in round and elongated spermatids was also immunoreactive.  相似文献   

13.
Bacillopeptidase F is a serine endopeptidase excreted by Bacillus subtilis 168 after the end of exponential growth. As a step toward discovering a physiological function for this protease, an enzymological and immunological study was undertaken. When bacillopeptidase F was purified at pH 10, a number of enzymically active, rapidly moving electrophoretic forms were observed, as had been previously reported. Rabbit antiserum was prepared against one form. When the enzyme was purified at pH 6.0 in the presence of the covalent inhibitor phenylmethylsulfonyl fluoride, using the rabbit antiserum to detect the bacillopeptidase F protein, no fast-moving electrophoretic forms were observed. Instead, only two forms of the enzyme were isolated. One form had a molecular weight of 33,000, and the other had a molecular weight of 50,000, as determined by equilibrium sedimentation methods. Both forms appeared to be glycoproteins, both contained compounds, released on acid hydrolysis, which cochromatographed with phosphoserine and galactosamine, and the two gave identical immunoprecipitin lines in Ouchterlony double-diffusion tests. The smaller form had a pI of 4.4, whereas the larger had a pI of 5.4. The data suggest that bacillopeptidase F is distinct from all other proteases of B. subtilis.  相似文献   

14.
Ultracentrifugation studies of purified mouse hepatic catalase revealed that 5-7% of the total material consists of a form with a higher molecular weight than the bulk of the catalase. The two components were separated by sucrose-gradient centrifugation. Polyacrylamide-gel electrophoresis (in borate buffer) demonstrated that high-molecular-weight catalase is enriched in a more slowly migrating component, and sodium dodecyl sulphate/polyacrylamide gel-electrophoresis demonstrated that the molecular weight of the subunits of the high-molecular-weight material is identical with that of the subunits of the major form. These results suggest that high-molecular-weight catalase consists of subunits that are not markedly distinct from those present in the normal catalase tetramer.  相似文献   

15.
1. Three forms of the Lactobacillus plantarum enzyme D-erythro-dihydroneopterin triphosphate synthetase, the first enzyme in folate biosynthesis, have been demonstrated by polyacrylamide gel electrophoresis. The enzyme forms designated the alpha prime, alpha and beta forms have been shown to be conformers with molecular weights of approx. 200 000. Study of the subunit structure of the beta enzyme species by sodium dodecylsulfate-polyacrylamide gel electrophoresis revealed a single protein with an estimated molecular weight of 20 000 which suggests that the enzyme molecule may be composed of ten polypeptide chains. 2. Of the three conformers only one form, the beta form, appears to be enzymatically active. The two other conformers must undergo conformational changes to the beta species before enzymatic activity can be demonstrated in reaction mixtures containing these enzyme forms. 3. The three enzyme species are interconvertible. The removal of phosphate ions from the enzymatically active beta form results in the formation of two inactive species which suggests that the conformation of the active enzyme is stabilized by non-covalently bound phosphate ions. Conversion of the inactive species to the beta enzyme form may be effected by the readdition of phosphate, substrate or certain nucleotides.  相似文献   

16.
We separated two forms of arylalkylamine N-acetyltransferase (AANAT) from various organs of the American cockroach, Periplaneta americana. Both forms of the enzyme had an equivalent molecular mass of 28 kDa. One form isolated from the testicular accessory glands had high enzyme activity at acidic pHs. The isoelectric point was 5-6 and the substrate specificity was wider than the other type. The other isolated form from female midguts had a higher level of enzyme activity at basic pHs. These findings suggested that P. americana contains polymorphic AANAT, as is the case in Drosophila melanogaster. These forms differed not only in pH specificity, and substrate specificity but in chromatographic behavior and kinetic properties. Most of the organs we examined contained a mixture of the two forms since two types of AANAT activity were separated in different chromatographic fractions when two pH conditions were used for activity measurement.  相似文献   

17.
Forty-three hisB mutants of Salmonella typhimurium have been screened to determine the molecular size of the resulting histidinol phosphate phosphatase activity, one of the activities of a bifunctional enzyme produced by this gene which also controls imidazole glycerol phosphate dehydrase activity. Mutation in hisB can lead to the loss of both phosphatase and dehydrase activities, or only of dehydrase activity. Through the use of nonsense mutants lacking dehydrase activity, a distinct point of transition was detected near the middle of hisB at which a dramatic change occurs in the size of the phosphatase enzyme that is synthesized. A missense mutant with a lesion in this region has a high-molecular-weight enzyme which is eluted in the void volume of a Sephadex G-200 column. The enzyme from nonsense mutants near the transition point have molecular weights near 40,000. Even though the buffer conditions are designed to favor the stabilization of the high-molecular-weight form, some mutants have both high- and low-molecular-weight forms. The polypeptide chain specified by the operator proximal part of hisB is sufficient to allow the expression of phosphatase activity. The synthesis of substantially less than the complete product of hisB resulted in association into a form similar to the native enzyme which was found in the void volume of a Sephadex G-200 column.  相似文献   

18.
A comparative study of lung surfactant associated proteins was undertaken to determine which mammalian species would best serve as models for investigating alterations of the human lung surfactant system. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified surfactants in the presence of dithiothreitol revealed that surfactant invariably contains at least one peptide with molecular weight of 30 000-40 000. In the absence of disulfide reducing agents, the above peptides were in the form of high-molecular-weight proteins (greater than 400 kDa) in primates and cat, whereas in dog, rat and rabbit, the protein was a 72 kDa dimer. The 30-40 kDa peptide subunits were isolated from human, rat and dog surfactants and found to contain four or five residues of hydroxyproline. Antisera to either the human 34 kDa peptide or high-molecular-weight proteins reacted with the high-molecular-weight bands, the 34 kDa subunit and at least six intermediate disulfide-linked forms separated from purified human surfactant by electrophoresis under nonreducing conditions. Following electrophoresis in the presence of dithiothreitol, both antisera detected the 34 kDa peptide as well as other peptides ranging in molecular weight from 23 000 to 160 000. The isolated 34 kDa peptide readily reaggregated into disulfide-linked forms including 68 and 100 kDa complexes which were not reduced by 40 mM dithiothreitol. We conclude that the 34 kDa surfactant-associated peptide forms a complex system of monomeric and multimeric proteins, which varies among the species and could conceivably vary in distribution during lung development or disease.  相似文献   

19.
A comparative study of lung surfactant associated proteins was undertaken to determine which mammalian species would best serve as models for investigating alterations of the human lung surfactant system. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified surfactants in the presence of dithiothreitol revealed that surfactant invariably contains at least one peptide with molecular weight of 30 000–40 000. In the absence of disulfide reducing agents, the above peptides were in the form of high molecular-weight proteins (> 400 kDa) in primates and cat, whereas in dog, rat and rabbit, the protein was a 72 kDa dimer. The 30–40 kDa peptide subunits were isolated from human, rat and dog surfactants and found to contain four or five residues of hydroxyproline. Antisera to either the human 34 kDa peptide or high-molecular-weight proteins reacted with the high-molecular-weight bands, the 34 kDa subunit and at least six intermediate disulfide-linked forms separated from purified human surfactant by electrophoresis under nonreducing conditions. Following electrophoresis in the presence of dithiothreitol, both antisera detected the 34 kDa peptide as well as other peptides ranging in molecular weight from 23 000 to 160 000. The isolated 34 kDa peptide readily reaggregated into disulfide-linked forms including 68 and 100 kDa complexes which were not reduced by 40 mM dithiothreitol. We conclude that the 34 kDa surfactant-associated peptide forms a complex system of monomeric and multimeric proteins, which varies among the species and could conceivably vary in distribution during lung development or disease.  相似文献   

20.
Two forms of tartrate-sensitive acid phosphatases (EC 3.1.3.2) were purified from rabbit kidney cortex by a multiple-column-chromatography method. The basic form constituted 90% of the enzyme and migrated as a single band of protein on polyacrylamide-gel electrophoresis. The proteins contaminating the acidic form did not exceed 5% of the total protein. The specific activity towards p-nitrophenyl phosphate was 12 mumol/min per mg for the basic form and 0.7 mumol/min per mg for the acidic form. The basic form of the enzyme differs from the acidic form in its heat-stability, Km values, inhibition rates by tartrate and fluoride and substrate specificities. Relative to p-nitrophenyl phosphate hydrolysis rate, the acidic form hydrolysed a variety of physiological monophosphate esters, whereas the basic form hydrolysed only CMP and phosphoenolpyruvate. Bacterial neuraminidases had no effect on the activity and mobility of the acidic form on polyacrylamide-gel electrophoresis. Both forms have the same molecular weight (101000 +/- 4000) and are probably composed of two identical subunits. The question whether the two forms of the enzyme are different proteins or whether one is a modified form of the other is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号