首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Although the transgenic technology has been successfully used to generate fluorescent zebrafish and medaka for ornamental purposes, the practicability of the technology has not been demonstrated in other ornamental fish species. In the present study, we have tested the transgenic technology in a bona fide ornamental fish species, the white skirt tetra (Gymnocorymbus ternetzi). First, its embryonic development was briefly described. Second, we successfully introduced an rfp (red fluorescent protein) gene construct driven by a strong muscle-specific mylz2 promoter from the zebrafish into the white skirt tetra and demonstrated muscle-specific expression of the RFP reporter protein. Importantly, the vivid red fluorescent color was prominently visible in adult transgenic founders under the normal daylight, like the currently marketed red fluorescent transgenic zebrafish. Thus, our current study demonstrated the feasibility of using the well-characterized zebrafish mylz2 promoters to produce useful fluorescent ornamental fish in other fish species by the transgenic technology.  相似文献   

2.
Mammalian intestinal fatty acid-binding protein (I-FABP) is a small cytosolic protein and is thought to play a crucial role of intracellular fatty acid trafficking and metabolism in gut. To establish an in vivo system for investigating its tissue-specific regulation during zebrafish intestinal development, we isolated 5'-flanking sequences of the zebrafish L-FABP gene and used a transgenic strategy to generate gut-specific transgenic zebrafish with green/red fluorescent intestine. The 4.5-kb 5'-flanking sequence of zebrafish I-FABP gene was sufficient to direct fluorescent expression in intestinal tube, first observed in 3 dpf embryos and then continuously to the adult stage. This pattern of transgenic expression is consistent with the expression pattern of the endogenous gene. In all five transgenic lines 45-52% of the F2 inheritance rates were consistent with the ratio of Mendelian segregation. These fish can also provide a valuable resource of labeled adult intestinal cells for in vivo or in vitro studies. Finally, it is possible to establish an in vivo system using these fish for screening genes required for gut development. genesis 38:26-31, 2004.  相似文献   

3.
Pan X  Wan H  Chia W  Tong Y  Gong Z 《Transgenic research》2005,14(2):217-223
To test the Cre/loxP recombination system in zebrafish, a stable transgenic zebrafish line was developed by using a floxed (loxP flanked) gfp(green fluorescent protein) gene construct under the muscle-specific mylz2 promoter. Like our previous non-floxed gfp transgenic line under the same promoter, the new transgenic line expresses GFP reporter faithfully in fast skeletal muscles to the same intensity. To demonstrate the excision of floxed gfp transgene, in vitro synthesized Cre RNA was injected into embryos of floxed gfp transgenic zebrafish and we found a dramatic reduction of GFP expression. To confirm the excision, PCR was performed and a DNA fragment of correct size was amplified as predicted from the Cre/loxP mediated excision. Finally, we cloned the fragment and sequence information confirmed that the excision occurred at the precise site as predicted. Our experiments demonstrated that the Cre/loxP system can function efficiently and accurately in the zebrafish system.  相似文献   

4.
为了建立一种用于研究肌肉和心脏发育及其相关疾病的绿色荧光蛋白(enhanced green fluorescent protein,EGFP)转基因斑马鱼品系,本研究使用斑马鱼ttn.2基因编码区上游启动子序列和绿色荧光蛋白基因编码序列构建了重组表达载体,并将该载体和Tol2转座酶的加帽mRNA显微共注射入斑马鱼1-细胞期胚胎,通过荧光检测、遗传杂交筛选和分子鉴定等方法,成功建立了能稳定遗传的Tg(ttn.2:EGFP)转基因斑马鱼品系。荧光表达分析及原位杂交分析结果表明,绿色荧光信号在斑马鱼肌肉和心脏组织中特异表达模式与ttn.2基因的mRNA表达一致。通过反向PCR鉴定转基因表达载体在F1代斑马鱼品系中的随机整合位点,结果表明:No.33转基因品系的EGFP基因整合在斑马鱼的4号和11号染色体上,No.34转基因品系则整合在1号染色体上。该荧光转基因斑马鱼品系Tg(ttn.2:EGFP)的成功构建为肌肉和心脏发育以及相关疾病研究提供了一个新的理想实验模型。此外,绿色荧光强烈表达的斑马鱼品系还可以作为一种新的观赏鱼。  相似文献   

5.
The zebrafish embryo is especially valuable for cell biological studies because of its optical clarity. In this system, use of an in vivo fluorescent reporter has been limited to green fluorescent protein (GFP). We have examined other fluorescent proteins alone or in conjunction with GFP to investigate their efficacy as markers for multi-labeling purposes in live zebrafish. By injecting plasmid DNA containing fluorescent protein expression cassettes, we generated single-, double-, or triple-labeled embryos using GFP, blue fluorescent protein (BFP, a color-shifted GFP), and red fluorescent protein (DsRed, a wild-type protein structurally related to GFP). Fluorescent imaging demonstrates that GFP and DsRed are highly stable proteins, exhibiting no detectable photoinstability, and a high signal-to-noise ratio. BFP demonstrated detectable photoinstability and a lower signal-to-noise ratio than either GFP or DsRed. Using appropriate filter sets, these fluorescent proteins can be independently detected even when simultaneously expressed in the same cells. Multiple labels in individual zebrafish cells open the door to a number of biological avenues of investigation, including multiple, independent tags of transgenic fish lines, lineage studies of wild-type proteins expressed using polycistronic messages, and the detection of protein-protein interactions at the subcellular level using fluorescent protein fusions.  相似文献   

6.
Seeds possess a high intrinsic capacity for protein production that makes them a desirable bioreactor platform for the manufacture of transgenic products. One strategy to enhance foreign protein production involves exchanging the capacity to produce intrinsic proteins for the capacity to produce a high level of foreign proteins. Suppression of the alpha/alpha' subunit of beta-conglycinin storage protein synthesis in soybean has been shown previously to result in an increase in the accumulation of the glycinin storage protein, some of which is sequestered as proglycinin into de novo endoplasmic reticulum (ER)-derived protein bodies. The exchange of glycinin for conglycinin is quantitative, with the remodelled soybeans possessing a normal protein content with an altered proteome. The green fluorescent protein (GFP)-kdel reporter was transferred in a construct using the glycinin promoter and terminator to mimic glycinin gene expression. When expressed in soybean seeds, GFP-kdel accreted to form ER-derived protein bodies. The introgression of GFP-kdel into the alpha/alpha' subunit of the beta-conglycinin suppression background resulted in a fourfold enhancement of GFP-kdel accumulation to > 7% (w/w) of the total protein in soybean seeds. The resulting seeds accumulated a single population of ER membrane-bound protein bodies that contained both GFP-kdel and glycinin. Thus, the collateral proteome rebalancing that occurs with the suppression of intrinsic proteins in soybean can be exploited to produce an enhanced level of foreign proteins.  相似文献   

7.
We isolated a 2.3 kb DNA segment from the upstream region of the zebrafish cytokeratin II (zfCKII) gene. Transgenic embryos, produced by using a series of 5' deletions linked to the red fluorescent protein (RFP) reporter, showed that the -141/+85 segment of zfCKII directed RFP expression in epidermal cells, whereas the -111/+85 segment did not. When -141/-111 was deleted from -355/+85 and microinjected into one-celled embryos, no fluorescence was observed at later stages, indicating that the -141/-111 segment is required for green fluorescent protein expression in epidermal cells. Furthermore, when a putative KLF-binding site at -119/-117 was mutated, RFP expression rates and intensities were reduced dramatically, although still observed, suggesting that -119/-117 within -141/-111 is a key cis-element for controlling epidermis-specific expression of the zfCKII gene. Finally, we generated a zebrafish transgenic line, Tg(zfCKII(2.3):RFP), which carries an upstream 2.3 kb regulatory region of the zfCKII gene fused with RFP. The expression pattern in the epidermal cells of Tg(zfCKII(2.3):RFP) fish recapitulated that of the endogenous gene. F2 embryos derived from Tg(zfCKII(2.3):RFP) males crossed with wild-type females revealed that the earliest onset of RFP expression was at the sphere stage, indicating that this transgenic approach can be used for studying zygotic expression of maternally inherited genes.  相似文献   

8.
Bacterial infections represent serious diseases in aquaculture, rapidly leading to fish death by septicemia. We investigated whether the electrotransfer of green fluorescent protein gene fusion epinecidin-1 (CMV-gfp-epi) DNA into zebrafish muscle could regulate the fish immune response and inhibit bacterial growth. Electroporation parameters such as the number of pulses, voltage, and amount of plasmid DNA were analyzed, and results demonstrated the greatest mRNA expression level of gfp-epi relative to β-actin was obtained with a pulse number of 4, a voltage strength of 100 V/cm, a concentration of DNA of 90 μg/fish, and electroporation for 96 h. In addition, the cytomegalovirus (CMV) promoter exhibited higher activity compared to the mylz promoter in muscle for electrotransfer in zebrafish. GFP fluorescence and gfp-epi mRNA expression in tissues after electroporation were also studied by a polymerase chain reaction, immunohistochemistry, and fluorescence microscopy. gfp-epi expression was significantly correlated with decreased bacterial numbers and immune-related gene expression. These data demonstrate that electroporation of epinecidin-1 might have provoked an inflammatory response that accounts for the improvement in bacterial clearance.  相似文献   

9.
The rapid development of transparent zebrafish embryos (Danio rerio) in combination with fluorescent labelings of cells and tissues allows visualizing developmental processes as they happen in the living animal. Cells of interest can be labeled by using a tissue specific promoter to drive the expression of a fluorescent protein (FP) for the generation of transgenic lines. Using fluorescent photoconvertible proteins for this purpose additionally allows to precisely follow defined structures within the expression domain. Illuminating the protein in the region of interest, changes its emission spectrum and highlights a particular cell or cell cluster leaving other transgenic cells in their original color. A major limitation is the lack of known promoters for a large number of tissues in the zebrafish. Conversely, gene- and enhancer trap screens have generated enormous transgenic resources discretely labeling literally all embryonic structures mostly with GFP or to a lesser extend red or yellow FPs. An approach to follow defined structures in such transgenic backgrounds would be to additionally introduce a ubiquitous photoconvertible protein, which could be converted in the cell(s) of interest. However, the photoconvertible proteins available involve a green and/or less frequently a red emission state1 and can therefore often not be used to track cells in the FP-background of existing transgenic lines. To circumvent this problem, we have established the PSmOrange system for the zebrafish2,3. Simple microinjection of synthetic mRNA encoding a nuclear form of this protein labels all cell nuclei with orange/red fluorescence. Upon targeted photoconversion of the protein, it switches its emission spectrum to far red. The quantum efficiency and stability of the protein makes PSmOrange a superb cell-tracking tool for zebrafish and possibly other teleost species.  相似文献   

10.
11.
Two tissue-specific promoters were used to express both green fluorescent protein (GFP) and red fluorescent protein (RFP) in transgenic zebrafish embryos. One promoter (CK), derived from a cytokeratin gene, is active specifically in skin epithelia in embryos, and the other promoter (MLC) from a muscle-specific gene encodes a myosin light chain 2 polypeptide. When the 2 promoters drove the 2 reporter genes to express in the same embryos, both genes were faithfully expressed in the respective tissues, skin or muscle. When the 2 fluorescent proteins were expressed in the same skin or muscle cells under the same promoter, GFP fluorescence appeared earlier than RFP fluorescence in both skin and muscle tissues, probably owing to a higher detection sensitivity of GFP. However, RFP appeared to be more stable as its fluorescence steadily increased during development. Finally, F1 transgenic offspring were obtained expressing GFP in skin cells under the CK promoter and RFP in muscle cells under the MLC promoter. Our study demonstrates the feasibility of monitoring expression of multiple genes in different tissues in the same transgenic organism.  相似文献   

12.
Various genetically modified bioreactor systems have been developed to meet the increasing demands of recombinant proteins. Silk gland of Bombyx mori holds great potential to be a cost-effective bioreactor for commercial-scale production of recombinant proteins. However, the actual yields of proteins obtained from the current silk gland expression systems are too low for the proteins to be dissolved and purified in a large scale. Here, we proposed a strategy that reducing endogenous sericin proteins would increase the expression yield of foreign proteins. Using transgenic RNA interference, we successfully reduced the expression of BmSer1 to 50%. A total 26 transgenic lines expressing Discosoma sp. red fluorescent protein (DsRed) in the middle silk gland (MSG) under the control of BmSer1 promoter were established to analyze the expression of recombinant. qRT-PCR and western blotting showed that in BmSer1 knock-down lines, the expression of DsRed had significantly increased both at mRNA and protein levels. We did an additional analysis of DsRed/BmSer1 distribution in cocoon and effect of DsRed protein accumulation on the silk fiber formation process. This study describes not only a novel method to enhance recombinant protein expression in MSG bioreactor, but also a strategy to optimize other bioreactor systems.  相似文献   

13.
The precise control of spatiotemporal expression of target genes is crucial when establishing transgenic animals, and the introduction of genes for fluorescent marker proteins is inevitable for accelerating research at molecular levels. To assist this, we constructed a novel dual promoter expression vector for two independent reporter genes, green fluorescent protein (GFP) and red fluorescent protein (mCherry). Their expression is designed under the control of two distinct tissue-specific promoters, e.g. zebrafish cardiac muscle-specific promoter (cmlc2) and medaka skeletal muscle-specific promoter (myl2) derived from the myosin light chain 2 genes, and they are placed in a head-to-head orientation. After microinjecting the dual promoter expression vector into fertilized eggs of medaka, the developing fish embryos and the resulting transgenic fish lines showed strong GFP signal in the whole body (skeletal muscle) and mCherry signal in the heart (cardiac muscle). However, weak GFP signal was observed in the heart, indicating a leakiness of the skeletal muscle promoter. To improve the stringency of dual promoter expression, we inserted two chicken-derived insulators, e.g. tandem copies of the core sequence (250 bp) of cHS4 (5′-hypersensitive site-4 chicken beta-globin insulator), in the boundary of two promoters. The dual promoter expression vector with insulator now ensured the stringent tissue-specific expression in the transgenic fish lines. Thus, our dual promoter expression system with insulator is compatible to the conventional IRES and fused reporter gene systems and will be an alternative method to produce the transgenic fishes.  相似文献   

14.
Photoconversion of various green and cyan fluorescent proteins to the red fluorescent state under the oxygen-free conditions was studied. Such photoconversion has earlier been described for the EGFP green fluorescent protein. Phylogenetically distant fluorescent proteins that have a low identity of their amino acid sequences but contain chemically identical chromophores based on a Tyr residue were shown to be susceptible to this type of photoconversion. At the same time, the ECFP protein, which has 92% homology with EGFP but contains a chromophore based on tryptophan did not undergo the photoconversion. Thus, it is precisely the chromophore structure, rather than the amino acid environment that determines the ability of green fluorescent proteins to display photoconversion to the red fluorescent state under anaerobic conditions.  相似文献   

15.
We cloned the 5′-flanking region (1.2 kb) of a muscle-specific gene, encoding myosin light chain 2 polypeptide (mylz2) of a farmed carp, Labeo rohita (rohu). Sequence analysis using TRANSFAC-database search identified the consensus cis acting regulatory elements of TATA-box and E (CANNTG)-box, including the monocyte enhancer factor 2 motif, implying that it is likely to be a functional promoter. The proximal promoter (~620 bp) was highly homologous with that of Danio rerio (zebrafish) as compared to Channa striatus (snakehead murrel) counterparts and showed less identity with Sparus auratus (gilthead sea bream), Xenopus laevis (African clawed frog) and Rattus norvegicus (Norway rat). Direct muscular (skeletal) injection of the construct containing the mylz2 promoter (0.6 kb) fused to a green fluorescent protein (GFP) reporter gene showed efficient expression in L. rohita, validating its functional activity. Further, the functional activity was confirmed by the observation that this promoter drove GFP expression in the skeletal muscle of transgenic rohu. The promoter may have potential applications for value-addition in ornamental fishes and studying gene regulatory functions.  相似文献   

16.
利用荧光分光光度计定量分析GFP基因的表达水平   总被引:8,自引:0,他引:8  
以3种表达水分高低不一的绿色组织特异性启动子驱动绿色光蛋白(green fluorescent protein,GFP)基因转化烟草植株,设计了一种利用荧光分光光度计对组织中GFP的表达水平进行定量分析的新方法,利用该方法对获得的102株转基因烟草中不同部位叶片中的GFP表达水平进行了定量分析.其结果与荧光显微镜观察结果高度一致,从而证实利用这种新方法对GFP基因进行定量分析是可行的。  相似文献   

17.
Ge J  Dong Z  Li J  Xu Z  Song W  Bao J  Liang D  Li J  Li K  Jia W  Zhao M  Cai Y  Yang J  Pan J  Zhao Q 《Transgenic research》2012,21(5):995-1004
Yellow catfish (Pelteobagrus fulvidraco Richardson) is one of the most important freshwater farmed species in China. However, its small size and slow growth rate limit its commercial value. Because genetic engineering has been a powerful tool to develop and improve fish traits for aquaculture, we performed transgenic research on yellow catfish in order to increase its size and growth rate. Performing PCR with degenerate primers, we cloned a genomic fragment comprising 5'-flanking sequence upstream of the initiation codon of β-actin gene in yellow catfish. The sequence is 1,017?bp long, containing the core sequence of proximal promoter including CAAT box, CArG motif and TATA box. Microinjecting the transgene construct Tg(beta-actin:eYFP) of the proximal promoter fused to enhanced yellow fluorescent protein (eYFP) reporter gene into zebrafish and yellow catfish embryos, we found the promoter could drive the reporter to express transiently in both embryos at early development. Screening the offspring of five transgenic zebrafish founders developed from the embryos microinjected with Tg(ycbeta-actin:mCherry) or 19 yellow catfish founders developed from the embryos microinjected with Tg(beta-actin:eYFP), we obtained three lines of transgenic zebrafish and one transgenic yellow catfish, respectively. Analyzing the expression patterns of the reporter genes in transgenic zebrafish (Tg(ycbeta-actin:mCherry)nju8/+) and transgenic yellow catfish (Tg(beta-actin:eYFP)nju11/+), we found the reporters were broadly expressed in both animals. In summary, we have established a platform to make transgenic yellow catfish using the proximal promoter of its own β-actin gene. The results will help us to create transgenic yellow catfish using "all yellow catfish" transgene constructs.  相似文献   

18.
In order to advance the application of antimicrobial peptides in aquaculture, transgenic zebrafish expressing the antimicrobial peptide, epinecidin-1, were developed and are reported on here. First, we cloned the zebrafish mylz2 promoter for this purpose. To characterize the activity of the mylz2 promoter, various fragments of it were analyzed using a firefly luciferase transient expression assay, in which maximum promoter activity was found with a 2.5-kb fragment. In addition, the 2.5-kb fragment also expressed considerable red fluorescent proteins in skeletal muscles of transgenic zebrafish. Second, in order to improve the translation efficiency of the Tol2 transposase, we constructed untranslated regions (UTRs) of zebrafish ba1 globin flanked by a transposase. A transient embryonic excision assay (TEEA) and in vivo fluorescent observations showed high transposition efficiency during embryonic development. After optimization of the promoter and transgene efficiencies, transgenic zebrafish with the Epi-1/DsRed plasmid (pTLR-m2.5 K-K.Epinecidin-1/DsRed vector) were developed, and expressions of Epi-1/DsRed in muscles and blood were demonstrated by immunohistochemical staining techniques. Moreover, we also found that the Epi-1/DsRed gene was efficiently and significantly expressed in vivo against Vibrio vulnificus and Streptococcus agalactiae after injecting the bacteria and determining bacterial counts. A gene expression study using real-time RT-PCR revealed that Epi-1/DsRed itself induced endogenous MyD88 expression in vivo. After Epi-1/DsRed transgenic zebrafish were infected with V. vulnificus 204, interleukin (IL)-10, IL-22, IL-26, lysozyme, toll-like receptor (TLR)1, TLR3, TLR4a, MyD88, and nuclear factor (NF)-κB activating protein-like were upregulated, but IL-1β and tumor necrosis factor-α were downregulated at 12 h post-infection; IL-21, complement component c3b, and NF-κB activating protein-like were downregulated, but MyD88 was upregulated at 24 h post-infection. These results suggest that using epinecidin-1 as a transgene in zebrafish can effectively inhibit bacterial growth for up to 24 h after infection.  相似文献   

19.
Zebrafish and medaka have become popular models for studying skeletal development because of high fecundity, shorter generation period, and transparency of fish embryo. The first step to study skeletal development is visualizing bone and cartilage. Live animal staining with fluorescent calcein have several advantages over the standard skeletal staining protocol by using alizarin red and alcian blue for bone and cartilage. However, there is no detailed study examining skeletal development of live marine fish larvae by calcein staining. Here we applied calcein staining to examine skeletal development in red sea bream larvae. In addition, green fluorescent protein (GFP) reporter zebrafish was employed to trace lineage analysis of intervertebral disk cells in live fish larvae. Calcein staining of red sea bream larvae successfully visualized development of craniofacial skeletons as well as urinary calculus. Histochemical detection of alkaline phosphatase (ALP) activity revealed that abnormal segmentation of notochord induced by RA during vertebral development in zebrafish. Immunohistochemistry clearly revealed that GFP‐positive cells in intervertebral space was nucleus polposus like cell in twhh‐GFP transgenic zebrafish. It was demonstrated usefulness of calcein and ALP staining and twhh‐GFP transgenic zebrafish for studying skeletal development in live fish larvae.  相似文献   

20.
Laser-induced gene expression in specific cells of transgenic zebrafish   总被引:16,自引:0,他引:16  
Over the past few years, a number of studies have described the generation of transgenic lines of zebrafish in which expression of reporters was driven by a variety of promoters. These lines opened up the real possibility that transgenics could be used to complement the genetic analysis of zebrafish development. Transgenic lines in which the expression of genes can be regulated both in space and time would be especially useful. Therefore, we have cloned the zebrafish promoter for the inducible hsp70 gene and made stable transgenic lines of zebrafish that express the reporter green fluorescent protein gene under the control of a hsp70 promoter. At normal temperatures, green fluorescent protein is not detectable in transgenic embryos with the exception of the lens, but is robustly expressed throughout the embryo following an increase in ambient temperature. Furthermore, we have taken advantage of the accessibility and optical clarity of the embryos to express green fluorescent protein in individual cells by focussing a sublethal laser microbeam onto them. The targeted cells appear to develop normally: cells migrate normally, neurons project axons that follow normal pathways, and progenitor cells divide and give rise to normal progeny cells. By generating other transgenic lines in which the hsp70 promoter regulates genes of interest, it should be possible to examine the in vivo activity of the gene products by laser-inducing specific cells to express them in zebrafish embryos. As a first test, we laser-induced single muscle cells to make zebrafish Sema3A1, a semaphorin that is repulsive for specific growth cones, in a hsp70-sema3A1 transgenic line of zebrafish and found that extension by the motor axons was retarded by the induced muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号