首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the addition of ethanol (10?g/l) to the liquid-phase on gas and solids holdup, circulation and mixing times and interstitial liquid velocity in a three-phase airlift reactor was investigated. The airlift reactor (60?l) is of the concentric draught-tube type with an enlarged degassing zone. Ca-alginate beads were used as solid-phase and airflow rate (from 1.9 to 90.2?l/min) and solids loading (0–30% (v/v)) were manipulated. Riser and downcomer gas holdup were found to increase with the addition of ethanol, leading to a decrease on the relative solids holdup. The presence of ethanol seems to have no influence on the circulation time. On the other hand, mixing time variation depends on the solids loading and airflow rate. Riser and downcomer interstitial liquid velocity are lower for ethanol solution than for water.  相似文献   

2.
The hydrodynamics of biotechnological processes is complex. So far, few studies were made with bioreactors of the airlift type with an enlarged degassing zone.In this work, the influence of solids loading, solids specific gravity and draught tube dimensions on mixing and circulation times and critical air flow rate for an internal loop airlift bioreactor with an enlarged sedimentation/degassing zone is studied.The results indicate that the critical air flow rate as well as the mixing time increase with an increase in solids loading in the bioreactor. Circulation time presents a maximum for a solids load between 5 and 10% (v/v). It is also shown that small variations in solids specific gravity, for values close to that of the liquid, have a significant influence on the critical air flow rate and on the mixing time.An optimal (minimal) value for the circulation time and for the critical air flow rate was obtained for a riser to down comer diameter ratio of 0.46. The minimum mixing time was obtained for a riser to down comer height ratio of 0.80.This work was supported by J.N.I.C.T. (Junta Nacional de Investigação Cientifica e Tecnológica).  相似文献   

3.
Hydrodynamic studies in an airlift reactor with an enlarged degassing zone   总被引:3,自引:0,他引:3  
The hydrodynamic behaviour of a 60?l three-phase airlift bioreactor, of the concentric draught tube type, with an enlarged degassing zone has been studied. Ca-alginate beads were used as the solid phase. Airflow rate (from 1.9 to 90.2?l/min), solids loading (0% to 40% (v/v)) and solids density (1016 and 1038?kg/m3) were manipulated and their influence on solids and gas holdup, circulation and mixing times and in the interstitial liquid velocity was determined. Riser and downcomer solids holdup was found to decrease with the increase of airflow rate and to increase with solids loading and density. On the contrary, gas holdup in the riser and in the downcomer increased with airflow rate and decreased with solids loading and density. By increasing airflow rate, a decrease in circulation time was observed while the effects of solids loading and density were negligible. Mixing time decreased with airflow rate, increased with solids density, in the studied range, and presented a maximum for solids loading of approximately 20% (v/v).  相似文献   

4.
Internal airlift reactors are closed systems considered today for microalgae cultivation. Several works have studied their hydrodynamics but based on important solid concentrations, not with biomass concentrations usually found in microalgae cultures. In this study, an internal airlift reactor has been built and tested in order to clarify the hydrodynamics of this system, based on microalgae typical concentrations. A model is proposed taking into account the variation of air bubble velocity according to volumetric air flow rate injected into the system. A relationship between riser and downcomer gas holdups is established, which varied slightly with solids concentrations. The repartition of solids along the reactor resulted to be homogenous for the range of concentrations and volumetric air flow rate studied here. Liquid velocities increase with volumetric air flow rate, and they vary slightly when solids are added to the system. Finally, liquid circulation time found in each section of the reactor is in concordance with those employed in microalgae culture.  相似文献   

5.
《Biological Wastes》1990,31(4):251-266
Aerobic digestion of primary and secondary sludges was studied in airlift bioreactors at mesophilic and thermophilic temperatures. The experimental studies were conducted with a laboratory U-shape airlift reactor (operating volume 23 liters) and in a pilot U-shape airlift reactor of 1150 liters operating volume. In the laboratory reactor, with cold (6°C) and concentrated (3–4% solids) feed of primary and secondary municipal sludge, a 30% volatile suspended solids (VSS) reduction was achieved with a hydraulic retention time (HRT) of 2·5 days. A VSS loading rate of 8·2 kg VSS/m3/day was achieved. This loading is comparable to that obtained in a pure-oxygen sparged, mixed reactor.In the pilot-plant reactor at mesophilic temperature (31–33°C), a VSS loading rate of 7·9 kg VSS/m3/day and a VSS reduction of 40% were achieved with a HRT of 4 days.  相似文献   

6.
The effects of liquid recirculation on a liquefaction-acidogenic reactor in an anaerobic two-phase digesting system operating with grass-clover silage was studied during 40 days after initiating recirculation of effluent from the methanogenic reactor to the liquefaction-acidogenic reactor. An increase in alkalinity and, thus, an increase in pH from 5.2 to 6.0 occurred in the liquefaction-acidogenic reactor. During the same period, a 10-fold increase (from 0.2 to 1.9 g·l–1·h–1) in the degradation rate of mannitol and an almost 9-fold increase in the activity of hydrogenotrophic methanogens was observed. The estimated number of these bacteria increased by one order of magnitude. The average degradation rate of lactate increased 3-fold, probably as a consequence of the more efficient hydrogen consumption by the hydrogenotrophic methanogens. An observed increase in net mineralization of organic nitrogen compounds was probably the main reason for an enhanced net production of organic acids (from 0.2 to 0.9 g·l–1·d–1). The liquefaction of cellulose and hemicellulose was low from the start of recirculation (3% and 20% reduction, respectively) and did not seem to be affected by the liquid recirculation. This was in accordance with the low number of cellulose degraders (4.0·102 counts·ml–1) observed. The results from this investigation show that the initiation of liquid recirculation in silage-fed two-phase biogas processes will stimulate the activity of hydrogenotrophic methanogens in the liquefaction-acidogenic reactor. This will lead to more thermodynamically favourable conditions for acidification reactions which are dependent upon interspecies transfer of reducing equivalents.Abbreviations COD chemical oxygen demand - CSTR completely stirred tank reactor - HRT hydraulic retention time - LA-reactor liquefaction-acidogenic reactor - M-reactor methanogenic reactor - MPN most probable number - OLR organic loading rate - SMA specific methanogenic activity - SRT solids retention time - TKN total Kjeldahl nitrogen - ts total solids - tss total suspended solids - vs volatile solids - vss volatile suspended solids  相似文献   

7.
This article describes how a combination of an ultra scale‐down (USD) shear device feeding a microwell centrifugation plate may be used to provide a prediction of how mammalian cell broth will clarify at scale. In particular a method is described that is inherently adaptable to a robotic platform and may be used to predict how the flow rate and capacity (equivalent settling area) of a centrifuge and the choice of feed zone configuration may affect the solids carry over in the supernatant. This is an important consideration as the extent of solids carry over will determine the required size and lifetime of a subsequent filtration stage or the passage of fine particulates and colloidal material affecting the performance and lifetime of chromatography stages. The extent of solids removal observed in individual wells of a microwell plate during centrifugation is shown to correlate with the vertical and horizontal location of the well on the plate. Geometric adjustments to the evaluation of the equivalent settling area of individual wells (ΣM) results in an improved prediction of solids removal as a function of centrifuge capacity. The USD centrifuge settling characteristics need to be as for a range of equivalent flow rates as may be experienced at an industrial scale for a machine of different shear characteristics in the entry feed zone. This was shown to be achievable with two microwell‐plate based measurements and the use of varying fill volumes in the microwells to allow the rapid study of a fivefold range of equivalent flow rates (i.e., at full scale for a particular industrial centrifuge) and the effect of a range of feed configurations. The microwell based USD method was used to examine the recovery of CHO‐S cells, prepared in a 5 L reactor, at different points of growth and for different levels of exposure to shear post reactor. The combination of particle size distribution measurements of the cells before and after shear and the effect of shear on the solids remaining after centrifugation rate provide insight into the state of the cells throughout the fermentation and the ease with which they and accumulated debris may be removed by continuous centrifugation. Hence bioprocess data are more readily available to help better integrate cell culture and cell removal stages and resolve key bioprocess design issues such as choice of time of harvesting and the impact on product yield and contaminant carry over. Operation at microwell scale allows data acquisition and bioprocess understanding over a wide range of operating conditions that might not normally be achieved during bioprocess development. Biotechnol. Bioeng. 2009; 104: 321–331 © 2009 Wiley Periodicals, Inc.  相似文献   

8.
A novel two-stage anaerobic process for the microbial conversion of cellulose into biogas has been developed. In the first phase, a mixed population of rumen bacteria and ciliates was used in the hydrolysis and fermentation of cellulose. The volatile fatty acids (VFA) produced in this acidogenic reactor were subsequently converted into biogas in a UASB-type methanogenic reactor.A stepwise increase of the loading rate from 11.9 to 25.8 g volatile solids/L reactor volume/day (g VS/L/day) did not affect the degradation efficiency in the acidogenic reactor, whereas the methanogenic reactor appeared to be overloaded at the highest loading rate. Cellulose digestion was almost complete at all loading rates applied. The two-stage anaerobic process was also tested with a closed fluid circuit. In this instance total methane production was 0.438 L CH(4)g VS added, which is equivalent to 98% of the theoretical value. The application of rumen microorganisms in combination with a high-rate methane reactor is proposed as a means of efficient anaerobic degradation of cellulosic residues to methane. Because this newly developed two-phase system is based on processes and microorganisms from the ruminant, it will be referred to as "Rumen Derived Anaerobic Digestion" (RUDAD-) process.  相似文献   

9.
10.
Cephalexin is a constituent of the cephalosporin group used for the treatment of bronchitis and other heart diseases due to its enhanced oral activity. The effluent from these industries contains a disintegrated form of the drug contributing high chemical oxygen demand (COD), volatile solids and organic solvent. A laboratory-scale study was conducted to evaluate the efficiency of a fluidized bed reactor operated under anaerobic condition with bioaugmentation to treat the cephalexin containing pharmaceutical factory effluent. The main objective of the study was to show that bioaugmentation could be used to promote biological treatment to applications where conventional operation might be difficult or unfavourable. The effluent, with COD of 12,000-15,000 mg/l, was diluted and studied in single and multiple inoculation experiments with hydraulic retention times of 3-12 h. The removal efficiency after inoculation from an anaerobic sequencing batch reactor was related to influent concentration, mass of inoculum and hydraulic retention time characterized by calculating the initial food to microorganism ratio. Continuous COD removal efficiency attained a maximum value of 88.5% using bioaugmentation through periodic addition of acclimated cells every 2 days with 30-73.2 g of cells from an off-line enricher-reactor.  相似文献   

11.
An alternating pumped sequencing batch biofilm reactor (APSBBR) system was developed to treat small-scale domestic wastewater. This laboratory system had two reactor tanks, Reactor 1 and Reactor 2, with two identical plastic biofilm modules in each reactor. Reactor 1 of the APSBBR had five operational phases—fill, anoxic, aerobic, settle and draw. In the aerobic phase, the wastewater was circulated between the two reactor tanks with centrifugal pumps and aeration was mainly achieved through oxygen absorption by microorganisms in the biofilms when they were exposed to the air. This paper details the performance of the APSBBR system in treating synthetic domestic wastewater over 18 months. The effluent from the APSBBR system satisfied the European Wastewater Treatment Directive requirements, with respect to COD, ammonium-nitrogen and suspended solids. The biofilm growth in the two reactor tanks was different due to the difference in substrate loadings and growth conditions.  相似文献   

12.
AIMS: The aim of this investigation was to develop an empirical model for the autotrophic biodegradation of thiocyanate using an activated sludge reactor. METHODS AND RESULTS: The methods used for this purpose included the use of a laboratory scale activated sludge reactor unit using thiocyante feed concentrations from 200 to 550 mg x l(-1). Reactor effluent concentrations of <1 mg x l(-1) thiocyanate were consistently achieved for the entire duration of the investigation at a hydraulic retention time of 8 h, solids (biomass) retention of 18 h and biomass (dry weight) concentrations ranging from 2 to 4 g x l(-1). A biomass specific degradation rate factor was used to relate thiocyanate degradation in the reactor to the prevailing biomass and thiocyanate feed concentrations. A maximum biomass specific degradation rate of 16 mg(-1) x g(-1) x h(-1) (mg thiocyanate consumed per gram biomass per hour) was achieved at a thiocyanate feed concentration of 550 mg x l(-1). The overall yield coefficient was found to be 0.086 (biomass dry weight produced per mass of thiocyanate consumed). CONCLUSION: Using the results generated by this investigation, an empirical model was developed, based on thiocyanate feed concentration and reactor biomass concentration, to calculate the required absolute hydraulic retention time at which a single-stage continuously stirred tank activated sludge reactor could be operated in order to achieve an effluent concentration of <1 mg x l(-1). The use of an empirical model rather than a mechanistic-based kinetic model was proposed due to the low prevailing thiocyanate concentrations in the reactor. SIGNIFICANCE AND IMPACT OF THE STUDY: These results represent the first empirical model, based on a comprehensive data set, that could be used for the design of thiocyanate-degrading activated sludge systems.  相似文献   

13.
The primary objective of this study was to evaluate the effects of the organic loading rate on the performance of an up-flow anaerobic sludge blanket (UASB) reactor treating olive mill effluent (OME), based on the following indicators: (i) chemical oxygen demand (COD) removal efficiency; and (ii) effluent variability (phenol, suspended solids, volatile fatty acids, and pH stability). The UASB reactor was operated under different operational conditions (OLRs between 0.45 and 32 kg COD/m3·day) for 477 days. The results demonstrated that the UASB reactor could tolerate high influent COD concentrations. Removal efficiencies for the studied pollution parameters were found to be as follows: COD, 47∼92%; total phenol, 34∼75%; color, 6∼46%; suspended solids, 34∼76%. The levels of VFAs in the influent varied between 310 and 1,750 mg/L. Our measurements of the VFA levels indicated that some of the effluent COD could be attributed to VFAs (principally acetate, butyrate, iso-butyrate, and propionate) in the effluent, which occurred at levels between 345 and 2,420 mg/L. As the OLRs were increased, more VFAs were measured in the effluent. A COD removal efficiency of 90% could be achieved as long as OLR was kept at a level of less than 10 kg COD/m3·day. However, a secondary treatment unit for polishing purposes is necessary to comply with discharge standards.  相似文献   

14.
A study was performed to assess the feasibility of anaerobic treatment of slaughterhouse wastewaters in a UASB (Upflow Anaerobic Sludge Blanket) reactor and in an AF (Anaerobic Filter). Among the different streams generated, the slaughter line showed the highest organic content with an average COD of 8000 mg/l, of which 70% was proteins. The suspended solids content represented between 15 and 30% of the COD. Both reactors had a working volume of 21. They were operated at 37°C. The UASB reactor was run at OLR (Organic Loading Rates) of 1–6.5 kg COD/m3/day. The COD removal was 90% for OLR up to 5 kg COD/m3/day and 60% for an OLR of 6.5 kg COD/m3/day. For similar organic loading rates, the AF showed lower removal efficiencies and lower percentages of methanization. At higher OLR sludge, flotation occurred and consequently the active biomass was washed out from the filter. The results indicated that anaerobic treatment systems are applicable to slaughterhouse wastewaters and that the UASB reactor shows a better performance, giving higher COD removal efficiencies than the AF.  相似文献   

15.
Characteristics of rice husk gasification in an entrained flow reactor   总被引:1,自引:0,他引:1  
Experiments were performed in an entrained flow reactor to better understand the characteristics of biomass gasification. Rice husk was used in this study. Effects of the gasification temperature (700, 800, 900 and 1000 °C) and the equivalence ratio in the range of 0.220.34 on the biomass gasification and the axial gas distribution in the reactor were studied. The results showed that reactions of CnHm were less important in the gasification process except cracking reactions which occurred at higher temperature. In the oxidization zone, reactions between char and oxygen had a more prevailing role. The optimal gasification temperature of the rice husk could be above 900 °C, and the optimal value of ER was 0.25. The gasification process was finished in 1.42 s when the gasification temperature was above 800 °C. A first order kinetic model was developed for describing rice husk air gasification characteristics and the relevant kinetic parameters were determined.  相似文献   

16.
The technical feasibility of adopting the fixed-film reactor concept for biogas production from screened dairy manure was investigated. The methane production capability of laboratory-scale 4-L anaerobic reactors (conventional and fixed-film) receiving screened dairy manure and operated at 35 degrees C was compared. Dairy manure filtrate with 4.4% total solids (TS) and 3.4% volatile solids (VS) (average value) was prepared from 1:1 manure-water slurry. The feed material was added intermittently at loading rates ranging from 2.34 to 25 and 2.25 to 785 g VS/L d, respectively, for the conventional and fixed-film reactors. Maximum methane production rate (L CH(4)/L d) for the conventional reactor was 0.63 L CH(4)/L d achieved at a 6-day hydraulic retention time (HRT). For the fixed-film reactor the maximum production rate was 3.53 L CH(4)/L d when operated at a loading rate of 262 g VS/L d (3 h HRT). The fixed-film reactor was capable of sustaining a loading of 785 g VS/L d (1 h HRT). The fixed-film reactor performed much better than the conventional reactors. These results indicate that a large reduction of required reactor volume is possible through application of a fixed-film concept combined with a liquid-solid separation pretreatment of dairy manure.  相似文献   

17.
During the treatment of raw domestic wastewater in the upflow anaerobic sludge blanket (UASB) reactor, the suspended solids (SS) present in the wastewater tend to influence negatively the methanogenic activity and the chemical oxygen demand (COD) conversion efficiency. These problems led to the emergence of various anaerobic sludge bed systems such as the expanded granular sludge bed (EGSB), the upflow anaerobic sludge blanket (UASB)-septic tank, the hydrolysis upflow sludge bed (HUSB), the two-stage reactor and the anaerobic hybrid (AH) reactor. However, these systems have, like the UASB reactor, limited performance with regard to complete treatment (e.g., removal of pathogens). In this respect, a new integrated approach for the anaerobic treatment of domestic wastewater is suggested. This approach combines a UASB reactor and a conventional completely stirred tank reactor (CSTR) for the treatment of the wastewater low in SS and sedimented primary sludge, respectively. The principal advantages of the proposed system are energy recovery from organic waste in an environmentally friendly way; lowering the negative effect of suspended solids in the UASB reactor; production of a high quality effluent for irrigation; and prevention of odour problems.  相似文献   

18.
Studies on the performance of a laboratory scale upflow anaerobic solids removal (UASR) digester were carried out using sand-laden cow manure slurries having total solids (TS) concentration as 50 and 100 g/l. Hydraulic retention time (HRT) was maintained as 32.4 days, which resulted in the volatile solids (VS) loading rates of 1 and 1.64 g/l d. The UASR system was designed to remove sand from the manure slurry, while anaerobically digesting biodegradable solids inside a single reactor. To enhance the contact of microorganisms and substrate, the liquor from the top of the digester was recirculated through the bed of settled solids at its bottom. Volatile solids reduction through this process was observed to be 62% and 68% in the case of feed slurries having TS concentration as 50 and 100 g/l (referred in the text as 5% and 10% feed slurries), respectively. The methane production rates were observed to be 0.22 and 0.38 l/l d, while methane yield was 0.21 and 0.27 l CH4/g VS loaded, for 5% and 10% feed slurries, respectively. This indicates that the increase in the VS loading had a positive impact on methane production rate and methane yield. It would be of interest to study the performance of a UASR digester at higher solids loadings and with longer solids retention times. Nonetheless, the presented study showed that sand-laden manure slurries can be successfully digested in a UASR digester producing methane energy equivalent to 4 kW h per m3 of digester volume per day.  相似文献   

19.
An electrolytic aerating bioreactor was used to partially nitrify ammonia from wastewater. Activated sludge was cultured for 8 months to increase the population of ammonia-oxidizing bacteria (AOB) and then used in the bioreactor. The maximum ammonia removal rate was 0.64 mM NH3/l h in a 50 ml reactor using 5.4 g mixed liquor suspended solids per litre of AOB-dominant activated sludge.  相似文献   

20.
Effect of low density particles on the apparent liquid circulation velocity and overall gas holdup was studied in a modified reversed flow jet loop bioreactor. Experiments were conducted using polyurethane beads, polystyrene particles which are comparable to bioparticles found in biological applications and glass beads. Influence of gas and liquid flow rates, draft tube to reactor diameter ratio and solids loading on these hydrodynamic properties were studied. The liquid circulation velocity was found to increase with an increase in liquid flow rate but decrease with an increase in gas flow rate or solids loading. The overall gas holdup increased with an increase in gas or liquid flow rate but decreased with an increase in solids loading. The range of optimum draft tube to reactor diameter ratio was found to be 04–0.5. The results obtained with low density particles were comparatively better than those with glass beads. Correlations were proposed to evaluate liquid circulation velocity and overall gas holdup in terms of operational and geometrical variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号