首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescent in situ hybridization (FISH) was used to analyze the abundance and phylogenetic composition of sulfate-reducing bacteria in the aerobic waters and in the oxic/anoxic transitional zone (chemocline) of the Black Sea, where biogenic formation of reduced sulfur compounds was detected by radioisotope techniques. Numerous sulfate-reducing bacteria of the genera Desulfotomaculum (30.5% of detected bacterial cells), Desulfovibrio (29.6%), and Desulfobacter (6.7%) were revealed in the aerobic zone at a depth of 30 m, while Desulfomicrobium-related bacteria (33.5%) were prevalent in the upper chemocline waters at 150-m depth. Active cells of sulfate-reducing bacteria were much more abundant in the samples collected in summer than in the winter samples from the deep-sea zone. The presence of physiologically active sulfate reducers in oxic and chemocline waters of the Black Sea correlates with the hydrochemical data on the presence of reduced sulfur compounds in the aerobic water column.  相似文献   

2.
The sulfate-reducing bacterial populations of a stratified marine water column, Mariager Fjord, Denmark, were investigated by molecular and culture-dependent approaches in parallel. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA and DNA encoding rRNA (rDNA) isolated from the water column indicated specific bacterial populations in different water column layers and revealed a highly differentiated pattern of rRNA- and rDNA-derived PCR amplificates, probably reflecting active and resting bacterial populations. Hybridization of DGGE patterns with rRNA probes indicated the increased presence and activity (by at least 1 order of magnitude) of sulfate-reducing bacteria within and below the chemocline. Parallel to this molecular approach, an approach involving most-probable-number (MPN) counts was used, and it found a similar distribution of cultivable sulfate-reducing bacteria in the water column of Mariager Fjord, Approximately 25 cells and 250 cells per ml above and below the chemocline, respectively, were found. Desulfovibrio- and Desulfobulbus-related strains occurred in the oxic zone. DGGE bands from MPN cultures were sequenced and compared with those obtained from nucleic acids extracted from water column samples. The MPN isolates were phylogenetically affiliated with sulfate-reducing delta subdivision proteobacteria (members of the genera Desulfovibrio, Desulfobulbus, and Desulfobacter), whereas the molecular isolates constituted an independent lineage of the delta subdivision proteobacteria. DGGE of PCR-amplified nucleic acids with general eubacterial PCR primers conceptually revealed the general bacterial population, whereas the use of culture media allowed cultivable sulfate-reducing bacteria to be selected. A parallel study of Mariager Fjord biogeochemistry, bacterial activity, and bacterial counts complementing this investigation has been presented elsewhere (N.B. Ramsing, H. Fossing, T. G. Ferdelman, F. Andersen, and B. Thamdrup, Appl. Environ.  相似文献   

3.
The distribution and abundance of sulfate-reducing bacteria (SRB) and eukaryotes within the upper 4 mm of a hypersaline cyanobacterial mat community were characterized at high resolution with group-specific hybridization probes to quantify 16S rRNA extracted from 100-microm depth intervals. This revealed a preferential localization of SRB within the region defined by the oxygen chemocline. Among the different groups of SRB quantified, including members of the provisional families "Desulfovibrionaceae" and "Desulfobacteriaceae," Desulfonema-like populations dominated and accounted for up to 30% of total rRNA extracted from certain depth intervals of the chemocline. These data suggest that recognized genera of SRB are not necessarily restricted by high levels of oxygen in this mat community and the possibility of significant sulfur cycling within the chemocline. In marked contrast, eukaryotic populations in this community demonstrated a preference for regions of anoxia.  相似文献   

4.
A chemostat coculture of the sulfate-reducing bacterium Desulfovibrio oxyclinae together with a facultative aerobe heterotroph tentatively identified as Marinobacter sp. strain MB was grown under anaerobic conditions and then exposed to a stepwise-increasing oxygen influx (0 to 20% O(2) in the incoming gas phase). The coculture consumed oxygen efficiently, and no residual oxygen was detected with an oxygen supply of up to 5%. Sulfate reduction persisted at all levels of oxygen input, even at the maximal level, when residual oxygen in the growth vessel was 87 microM. The portion of D. oxyclinae cells in the coculture decreased gradually from 92% under anaerobic conditions to 27% under aeration. Both absolute cell numbers and viable cell counts of the organism were the same as or even higher than those observed in the absence of oxygen input. The patterns of consumption of electron donors and acceptors suggest that aerobic incomplete oxidation of lactate to acetate is performed by D. oxyclinae under high oxygen input. Both organisms were isolated from the same oxic zone of a cyanobacterial mat where they have to adapt to daily shifts from oxic to anoxic conditions. This type of syntrophic association may occur in natural habitats, enabling sulfate-reducing bacteria to cope with periodic exposure to oxygen.  相似文献   

5.
Extremely acidic, sulfur-rich environments can be natural, such as solfatara fields in geothermal and volcanic areas, or anthropogenic, such as acid mine drainage waters. Many species of acidophilic bacteria and archaea are known to be involved in redox transformations of sulfur, using elemental sulfur and inorganic sulfur compounds as electron donors or acceptors in reactions involving between one and eight electrons. This minireview describes the nature and origins of acidic, sulfur-rich environments, the biodiversity of sulfur-metabolizing acidophiles, and how sulfur is metabolized and assimilated by acidophiles under aerobic and anaerobic conditions. Finally, existing and developing technologies that harness the abilities of sulfur-oxidizing and sulfate-reducing acidophiles to extract and capture metals, and to remediate sulfur-polluted waste waters are outlined.  相似文献   

6.
Comparative sequence analysis of a 16S rRNA gene clone library from the chemocline of the meromictic Lake Cadagno (Switzerland) retrieved two clusters of sequences resembling sulfate-reducing bacteria within the family Desulfovibrionaceae. In situ hybridization showed that, similar to sulfate-reducing bacteria of the family Desulfobacteriaceae, bacteria of one cluster with similarity values to the closest cultured relatives of between 92.6 and 93.1% resembled free cells or cells loosely attached to other cells or debris. Bacteria of the second cluster closely related to Desulfocapsa thiozymogenes DSM7269 with similarity values between 97. 9 and 98.4% were generally associated with aggregates of different small-celled phototrophic sulfur bacteria, suggesting a potential interaction between the two groups of bacteria.  相似文献   

7.
The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O(2), H(2)S, NO(2)(-), NO(3)(-), NH(4)(+), and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells (approximately 10(9) to 10(10) cells per cm(3) of biofilm) were evenly distributed throughout the biofilm, even in the oxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations (approximately 10(8) to 10(9) cells per cm(3)). The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 microm below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S(0)) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms (approximately 1,500 microm), which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate.  相似文献   

8.
Comparative sequence analysis of a 16S rRNA gene clone library from the chemocline of the meromictic Lake Cadagno (Switzerland) retrieved two clusters of sequences resembling sulfate-reducing bacteria within the family Desulfovibrionaceae. In situ hybridization showed that, similar to sulfate-reducing bacteria of the family Desulfobacteriaceae, bacteria of one cluster with similarity values to the closest cultured relatives of between 92.6 and 93.1% resembled free cells or cells loosely attached to other cells or debris. Bacteria of the second cluster closely related to Desulfocapsa thiozymogenes DSM7269 with similarity values between 97.9 and 98.4% were generally associated with aggregates of different small-celled phototrophic sulfur bacteria, suggesting a potential interaction between the two groups of bacteria.  相似文献   

9.
A combination of fluorescence in situ hybridization (FISH), microprofiles, and denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rDNA fragments followed by hybridization analysis with specific probes was applied to investigate successional development of sulfate-reducing bacteria (SRB) community structure and in situ sulfide production activity within an activated sludge immobilized agar gel film. In this model biofilm system, since biases arising from biofilm heterogeneity can be ignored, the population dynamics of SRB in the agar gel is directly related to physiological capability and in situ activity of SRB. Microelectrode measurements showed that an anoxic zone was already developed at the beginning (0 day), a first sulfide production of 0.054 mumol H2S m(-2) x s(-1) was detected during the first week, and the rate increased gradually to 0.221 mumol H2S m(-2) x s(-1) in the fifth week. The most active sulfide production zone moved upward to the chemocline and intensified with time to form a narrow zone with high volumetric sulfide production rates. This result coincided with the shift of the spatial distributions of SRB populations determined by FISH. In situ hybridization with probe SRB385 for mainly general SRB of the delta Proteobacteria plus some gram-positive bacteria and probe 660 for Desulfobulbus indicated that the most abundant populations of SRB were primarily restricted to near the oxic/anoxic interface (chemocline). A close observation of the development of the vertical distributions of SRB populations revealed that the cell numbers of Desulfobulbus tripled (from 0.5 x 10(8) to 1.5 x 10(8) cells cm(-3)) near the oxic/anoxic interface. Similar growth (from 1.0 x10(8) to 4.5 x 10(8) cells cm(-3)) of Desulfovibrio-like SRB that hybridized with probe SRB385 was observed. PCR-DGGE followed by hybridization analysis revealed that one Desulfobulbus strain was detected from the beginning, and another strain appeared after 1 week, coinciding with the first detected sulfide production. In addition, three strains hybridizing with probe 687 (possibly Desulfovibrio) were also dominant SRB in the agar gel.  相似文献   

10.
The distribution and abundance of sulfate-reducing bacteria (SRB) and eukaryotes within the upper 4 mm of a hypersaline cyanobacterial mat community were characterized at high resolution with group-specific hybridization probes to quantify 16S rRNA extracted from 100-μm depth intervals. This revealed a preferential localization of SRB within the region defined by the oxygen chemocline. Among the different groups of SRB quantified, including members of the provisional families “Desulfovibrionaceae” and “Desulfobacteriaceae,” Desulfonema-like populations dominated and accounted for up to 30% of total rRNA extracted from certain depth intervals of the chemocline. These data suggest that recognized genera of SRB are not necessarily restricted by high levels of oxygen in this mat community and the possibility of significant sulfur cycling within the chemocline. In marked contrast, eukaryotic populations in this community demonstrated a preference for regions of anoxia.  相似文献   

11.
The vertical distribution of sulfate-reducing bacteria (SRB) in photosynthetic biofilms from the trickling filter of a sewage treatment plant was investigated with oligonucleotide probes binding to 16S rRNA. To demonstrate the effect of daylight and photosynthesis and thereby of increased oxygen penetration, we incubated two 4-mm-thick biofilm samples in darkness or exposed to light at natural intensity. Gradients of O2, H2S, and pH were examined with microelectrodes during incubation. The samples were subsequently frozen with liquid nitrogen and sliced on a cryomicrotome in 20-microns vertical slices. Fluorescent-dye-conjugated oligonucleotides were used as "phylogenetic" probes to identify single cells in the slices. Oligonucleotide sequences were selected which were complementary to short sequence elements (16 to 20 nucleotides) within the 16S rRNA of sulfate-reducing bacteria. The probes were labeled with fluorescein or rhodamine derivatives for subsequent visualization by epifluorescence microscopy. Five probes were synthesized for eukaryotes, eubacteria, SRB (including most species of the delta group of purple bacteria), Desulfobacter spp., and a nonhybridizing control. The SRB were unevenly distributed in the biofilm, being present in all states from single scattered cells to dense clusters of several thousand cells. To quantify the vertical distribution of SRB, we counted cells along vertical transects through the biofilm. This was done in a blind experiment to ascertain the reliability of the staining. A negative correlation between the vertical distribution of positively stained SRB cells and the measured O2 profiles was found. The distribution differed in light- and dark-incubated samples presumably because of the different extensions of the oxic surface layer. In both cases the SRB were largely restricted to anoxic layers.  相似文献   

12.
The spatiotemporal distribution of chlorophyll pigments (chloropigments) in the water column of a meromictic lake, Lake Suigetsu (Fukui, Japan), was investigated. Water samples were collected from the central basin of Lake Suigetsu bimonthly between May 2008 and March 2010 at appropriate depths, including the oxic surface, oxic–anoxic interface, and anoxic bottom layers. Chlorophyll a, related to cyanobacteria and eukaryotic phytoplankton, was detected throughout the water column during the years of the study, whereas bacteriochlorophyll e, related to brown-colored green sulfur bacteria, was detected in the anoxic layers below the chemocline at a maximum concentration of 825 μg L?1. The concentration of bacteriochlorophyll e was generally maximal at or just below the chemocline of the lake. The cellular content of bacteriochlorophyll e was estimated to be low in the upper part of the chemocline and tended to increase with increasing water depth. Bacteriochlorophyll a, which was presumably related to purple sulfur bacteria, was only detected at the chemocline during summer and autumn at concentrations of 5.4–16.3 μg L?1. Our analysis of the chloropigment distribution for the two years of the study suggested that brown-colored green sulfur bacteria are the predominant phototroph in the anoxic layers of Lake Suigetsu, and that these play a significant role in the carbon and sulfur cycling of the lake, especially from spring to summer.  相似文献   

13.
We successfully isolated a novel aerobic chemolithotrophic sulfur-oxidizing bacterium, designated strain SO07, from wastewater biofilms growing under microaerophilic conditions. For isolation, the use of elemental sulfur (S(0)), which is the most abundant sulfur pool in the wastewater biofilms, as the electron donor was an effective measure to establish an enrichment culture of strain SO07 and further isolation. 16S rRNA gene sequence analysis revealed that newly isolated strain SO07 was affiliated with members of the genus Halothiobacillus, but it was only distantly related to previously isolated species (89% identity). Strain SO07 oxidized elemental sulfur, thiosulfate, and sulfide to sulfate under oxic conditions. Strain SO07 could not grow on nitrate. Organic carbons, including acetate, propionate, and formate, could not serve as carbon and energy sources. Unlike other aerobic sulfur-oxidizing bacteria, this bacterium was sensitive to NaCl; growth in medium containing more than 150 mM was negligible. In situ hybridization combined with confocal laser scanning microscopy revealed that a number of rod-shaped cells hybridized with a probe specific for strain SO07 were mainly present in the oxic biofilm strata (ca. 0 to 100 micro m) and that they often coexisted with sulfate-reducing bacteria in this zone. These results demonstrated that strain SO07 was one of the important sulfur-oxidizing populations involved in the sulfur cycle occurring in the wastewater biofilm and was primarily responsible for the oxidation of H(2)S and S(0) to SO(4)(2-) under oxic conditions.  相似文献   

14.
The vertical distribution of sulfate-reducing bacteria was investigated in a shallow, eutrophic, meromictic lake, Lake Harutori, located in a residential area of Kushiro, Japan. A steep chemocline, characterized by gradients of oxygen, sulfide and salinity, was found at a depth of 3.5–4.0 m. The sulfide concentration at the bottom of the lake was high (up to a concentration of 10.7 mM). Clone libraries were constructed using the aprA gene, which encodes adenosine-5′-phosphosulfate reductase subunit A, in order to monitor sulfate-reducing bacteria. In the aprA clone libraries, the most abundant sequences were those from the Desulfosarcina–Desulfococcus (DSS) group. A primer set for a DSS group-specific 16S rRNA gene was used to construct another clone library, analysis of which revealed that the uncultured group of sulfate-reducing bacteria, SEEP SRB-1, accounted for nearly half of the obtained sequences. Quantification of the major bacterial groups by catalyzed reporter deposition-fluorescence in situ hybridization demonstrated that the DSS group accounted for 3.2–4.8% of the total bacterial community below the chemocline. The results suggested that the DSS group was one of the major groups of sulfate-reducing bacteria and that these presumably metabolically versatile bacteria might play an important role in sulfur cycling in Lake Harutori.  相似文献   

15.
Abstract

The purpose of this study was to characterize the distribution and activity of sulfate-reducing bacteria in tailings and sediments impacted by effluents from mining and smelting operations in the Norilsk area in northern Siberia. The Norilsk mining complex involves three smelter operations, a hydrometallurgical plant, and extensive tailings areas located in the permafrost zone. Sulfate reduction rates measured with a 35SO4 2? tracer technique under various in-situ conditions ranged from 0.05 to 30 nmol S cm?3 day?1. Acetate and glucose addition greatly stimulated sulfate reduction, whereas lactate had less effect. The most pronounced stimulation of sulfate reduction (6.5-fold) was observed with phosphate amendment. Most-probable-number (MPN) counts of sulfate-reducing bacteria in media with glucose, ethanol, lactate, and acetate as electron donors were generally highest at around 107 cells ml?1. The actual MPN counts varied with the sample, electron donor, and incubation conditions (pH 7.2 vs. pH 3.5; 28°C vs. 4°C). Enrichment cultures of sulfate-reducing bacteria were established from a sample that showed the highest rate of sulfate reduction. After multiple serial transfers, the dominant sulfate-reducers were identified by fluorescence in situ hybridization using genus and group-specific 16S rRNA-targeted oligonucleotide probes. Desulfobulbus spp. prevailed in ethanol and lactate enrichments and the Desulfosarcina-Desulfococcus group dominated in acetate and benzoate enrichments. Psychrophilic Desulfotalea-Desulfofustis and moderately psychrophilic Desulforhopalus spp. were identified in enrichments incubated at 4°C, but they were also found in mesophilic enrichments.  相似文献   

16.
Population analyses in water samples obtained from the chemocline of crenogenic, meromictic Lake Cadagno, Switzerland, in October for the years 1994 to 2003 were studied using in situ hybridization with specific probes. During this 10-year period, large shifts in abundance between purple and green sulfur bacteria and among different populations were obtained. Purple sulfur bacteria were the numerically most prominent phototrophic sulfur bacteria in samples obtained from 1994 to 2001, when they represented between 70 and 95% of the phototrophic sulfur bacteria. All populations of purple sulfur bacteria showed large fluctuations in time with populations belonging to the genus Lamprocystis being numerically much more important than those of the genera Chromatium and Thiocystis. Green sulfur bacteria were initially represented by Chlorobium phaeobacteroides but were replaced by Chlorobium clathratiforme by the end of the study. C. clathratiforme was the only green sulfur bacterium detected during the last 2 years of the analysis, when a shift in dominance from purple sulfur bacteria to green sulfur bacteria was observed in the chemocline. At this time, numbers of purple sulfur bacteria had decreased and those of green sulfur bacteria increased by about 1 order of magnitude and C. clathratiforme represented about 95% of the phototrophic sulfur bacteria. This major change in community structure in the chemocline was accompanied by changes in profiles of turbidity and photosynthetically available radiation, as well as for sulfide concentrations and light intensity. Overall, these findings suggest that a disruption of the chemocline in 2000 may have altered environmental niches and populations in subsequent years.  相似文献   

17.
Comparative sequence analysis of a 16S rRNA gene clone library from the chemocline of the meromictic Lake Cadagno (Switzerland) revealed the presence of a diverse number of phototrophic sulfur bacteria. Sequences resembled those of rRNA of type strains Chromatium okenii DSM169 and Amoebobacter purpureus DSM4197, as well as those of four bacteria forming a tight cluster with A. purpureus DSM4197 and Lamprocystis roseopersicina DSM229. In situ hybridization with fluorescent (Cy3 labeled) oligonucleotide probes indicated that all large-celled phototrophic sulfur bacteria in the chemocline of Lake Cadagno were represented by C. okenii DSM169, while small-celled phototrophic sulfur bacteria consisted of four major populations with different distribution profiles in the chemocline indicating different ecophysiological adaptations.  相似文献   

18.
The distribution and activity of sulfate-reducing bacteria (SRB) in the water column of the alpine meromictic Gek-Gel lake were studied. Apart from traditional microbiological methods based on cultivation and on measuring the process rates with radioactive labels, in situ fluorescent hybridization (FISH) was used, which enables identification and quantification without cultivating organisms. The peak rate of sulfate reduction, 0.486 microg S/(l day), was found in the chemocline at 33 m. The peak SRB number of 2.5 x 106 cells/ml, as determined by the end-point dilutions method on selective media, was found at the same depth. The phylogenetic position of the SRB, as determined by FISH, revealed the predominance of the Desulfovibrio spp., Desulfobulbus spp., and Desulfoarculus spp./Desulfomonile spp. groups. The numbers of spore-forming Desulfotomaculum spp. increased with depth. The low measured rates of sulfate reduction accompanied with high SRB numbers and the predominance of the groups capable of reducing a wide range of substrates permit us to propose utilization of electron acceptors other than sulfate as the main activity of the SRB in the water column.  相似文献   

19.
A chemostat coculture of the sulfate-reducing bacterium Desulfovibrio oxyclinae together with a facultative aerobe heterotroph tentatively identified as Marinobacter sp. strain MB was grown under anaerobic conditions and then exposed to a stepwise-increasing oxygen influx (0 to 20% O2 in the incoming gas phase). The coculture consumed oxygen efficiently, and no residual oxygen was detected with an oxygen supply of up to 5%. Sulfate reduction persisted at all levels of oxygen input, even at the maximal level, when residual oxygen in the growth vessel was 87 μM. The portion of D. oxyclinae cells in the coculture decreased gradually from 92% under anaerobic conditions to 27% under aeration. Both absolute cell numbers and viable cell counts of the organism were the same as or even higher than those observed in the absence of oxygen input. The patterns of consumption of electron donors and acceptors suggest that aerobic incomplete oxidation of lactate to acetate is performed by D. oxyclinae under high oxygen input. Both organisms were isolated from the same oxic zone of a cyanobacterial mat where they have to adapt to daily shifts from oxic to anoxic conditions. This type of syntrophic association may occur in natural habitats, enabling sulfate-reducing bacteria to cope with periodic exposure to oxygen.  相似文献   

20.
Population analyses in water samples obtained from the chemocline of crenogenic, meromictic Lake Cadagno, Switzerland, in October for the years 1994 to 2003 were studied using in situ hybridization with specific probes. During this 10-year period, large shifts in abundance between purple and green sulfur bacteria and among different populations were obtained. Purple sulfur bacteria were the numerically most prominent phototrophic sulfur bacteria in samples obtained from 1994 to 2001, when they represented between 70 and 95% of the phototrophic sulfur bacteria. All populations of purple sulfur bacteria showed large fluctuations in time with populations belonging to the genus Lamprocystis being numerically much more important than those of the genera Chromatium and Thiocystis. Green sulfur bacteria were initially represented by Chlorobium phaeobacteroides but were replaced by Chlorobium clathratiforme by the end of the study. C. clathratiforme was the only green sulfur bacterium detected during the last 2 years of the analysis, when a shift in dominance from purple sulfur bacteria to green sulfur bacteria was observed in the chemocline. At this time, numbers of purple sulfur bacteria had decreased and those of green sulfur bacteria increased by about 1 order of magnitude and C. clathratiforme represented about 95% of the phototrophic sulfur bacteria. This major change in community structure in the chemocline was accompanied by changes in profiles of turbidity and photosynthetically available radiation, as well as for sulfide concentrations and light intensity. Overall, these findings suggest that a disruption of the chemocline in 2000 may have altered environmental niches and populations in subsequent years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号