首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The studies presented herein were aimed at characterizing the pathway involved in the internalization and degradation of human choriogonadotropin by cultured Leydig tumor cells. A quick biochemical method that differentiates between the surface-bound and internalized hormone was developed. Using this method and two hormone derivatives labeled exclusively (with 125I) in the alpha or beta subunits, it was possible to follow the fate of each hormone subunit during hormone binding, internalization, and degradation. The results show that the hormone is internalized in the intact form and that it reaches its place of degradation (presumably the lysosomes) in the intact form. The pathway for degradation of the internalized hormone is complex, and it appears to involve processing of one or both subunits of the intact hormone, followed by subunit dissociation and further degradation of the individual subunits. The alpha subunit is quickly degraded by the cells. The only detectable degradation products are extracellular amino acids. The beta subunit is degraded slower, and several intracellular degradation products are detectable before amino acids appear in the medium.  相似文献   

2.
The choriogonadotropin beta subunit is unique in the human glycoprotein hormone family in containing a carboxyl-terminal extension, with four sites of O-glycosylation, that is not present in the other beta subunits. We have used site-directed mutagenesis to define boundaries on the extent to which truncations can be made at the COOH terminus without abolishing subunit assembly and biological activity. Two COOH-terminal deletion mutant chains of human choriogonadotropin beta, des(93-145) and des(101-145), were prepared and expressed in Chinese hamster ovary cells containing a stably integrated gene for bovine alpha. The heterologous gonadotropin, bovine alpha-human choriogonadotropin des(101-145) beta, formed a heterodimer and, when assayed with transformed murine Leydig cells in vitro, competed with the binding of standard human choriogonadotropin and stimulated both cAMP and progesterone production, albeit with a reduced potency relative to bovine alpha-human choriogonadotropin beta wild type. In contrast, human choriogonadotropin des(93-145) beta, expressed under identical conditions in the presence of bovine alpha, failed to form heterodimer and thus exhibited no competitive binding and was without effect on cAMP and progesterone levels. Consequently, removal of the putative determinant loop region of the beta subunit (residues 93-100), which is believed to be important in determining receptor specificity, abolishes association with alpha. Hence, in addition to its possible role as a receptor determinant, this region of the molecule appears to be critical for proper folding or subunit interaction. The truncated form of human choriogonadotropin beta lacking residues 101-145 is the shortest form of the subunit yet described that retains biological activity. Moreover, these results demonstrate that the proposed disulfide between Cys-26 and Cys-110 is not required for subunit assembly or for receptor binding and subsequent intracellular signaling.  相似文献   

3.
The structure of the lutropin/choriogonadotropin (LH/CG) receptor of a clonal strain of cultured Leydig tumor cells (designated MA-10) and primary cultures of porcine granulosa cells was studied by cross-linking 125I-labeled derivatives of human CG and ovine LH with bifunctional succinimidyl esters. We show that in both cell types, both subunits of the receptor-bound hormone become cross-linked to a single cellular component of Mr = 106,000, when analyzed in the absence of reducing agents, and of Mr = 83,000 when analyzed in the presence of reducing agents. We also present a detailed investigation on the effects of several collagenase preparations on the structure and some functions of the LH/CG receptor. Our results show that the LH/CG receptor is exquisitively sensitive to degradation by these preparations of collagenase; degradation products can be detected only in the presence of reducing agents; the enzyme(s) responsible for degradation is not collagenase itself, but rather a contaminating enzyme(s), presumably a protease(s); and receptor degradation has little effect on the ability of the cells to bind hormone or to respond with increased steroid biosynthesis. Since normal gonadal cells are usually isolated following dispersion of the tissue with collagenase, our results suggest that these cells are likely to bear a degraded (albeit functional) form of the LH/CG receptor, and thus should not be used in studies dealing with the structure of this receptor.  相似文献   

4.
The nicotinic acetylcholine receptor has a subunit stoichiometry of alpha 2 beta gamma delta; all 5 subunits contain N-linked oligosaccharides. We investigated what role trimming of the oligosaccharides played in the post-translational processing of the subunits and assembly of the receptor by examining the receptor synthesized in the presence of an inhibitor of oligosaccharide trimming, 1-deoxynojirimycin. BC3H-1 cells express one-third fewer receptors when grown in the presence of 1-deoxynojirimycin. The receptor subunits that are expressed have decreased mobility by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating an inhibition of oligosaccharide trimming. In control cells, 40% of the translated alpha subunit acquires the capacity to bind alpha-bungarotoxin with a half-time of 40 min before assembly with the other subunits; the rest is rapidly degraded. In 1-deoxynojirimycin-treated cells approximately the same amount of alpha subunit is translated as in control cells, but that alpha subunit is degraded more rapidly, and only 25% acquires the capacity to bind alpha-bungarotoxin. From these results, we conclude that oligosaccharide processing either may aid in protecting the alpha subunit primary translation product from degradation or may be required for the conformational change or other post-translational modification(s) necessary for formation of the alpha-bungarotoxin binding form of the alpha subunit, which is then protected from proteolytic degradation. The cell surface receptor that is expressed in the presence of 1-deoxynojirimycin, however, is not altered in its affinity for cholinergic ligands. Thus, we conclude that differential N-linked oligosaccharide trimming of the 2 alpha subunits does not appear to play a part in the differences in affinities of the 2 alpha subunits for cholinergic ligands.  相似文献   

5.
Human choriogonadotropin (hCG) is a placental glycoprotein hormone composed of a 92-amino acid alpha subunit noncovalently linked to a 145-amino acid beta subunit. We report here the expression of biologically active hCG in mouse C127 cells transfected with expression vectors containing the DNA coding for both subunits. In addition, the same cell line was used to express the alpha subunit alone. The expression products were purified by affinity chromatography using specific monoclonal antibodies to hCG or its subunits. The system secreting biologically active hCG also produced a 10-fold or greater molar excess of free beta subunit. The dimeric hormone, as well as the excess beta subunit, resembles the standard urinary hCG and beta subunit by chemical and biological criteria. In contrast, when the vector encoding for the alpha subunit was expressed alone, the alpha subunit had a higher molecular weight than both standard alpha and the alpha found in the expressed dimeric hormone. The molecular weight difference between expressed alpha subunit and standard alpha was found to reside in the alpha peptide consisting of residues 52-91 which contained all of the carbohydrate of the alpha subunit. The N-asparagine-linked carbohydrate moieties in the recombinant alpha were found to be triantennary in contrast to biantennary in urinary alpha, and this hyperglycosylation was responsible for the higher molecular weight of the alpha subunit when it was expressed alone. We found no evidence of O-threonine glycosylation at position alpha 39 reported to be present in free forms of the alpha subunit; however, the companion paper (Corless, C.L., Bielinska, M., Ramabhadran, T. V., Daniels-McQueen, S. Otani, T., Reitz, B. A., Tiemeier, D. C., and Boime, I. (1987) J. Biol Chem. 262, 14197-14203) finds a small quantity of O-glycosylation. Since the excess beta subunit appears to be of normal size and contains the expected complement of sugars, only free alpha subunit seems to be a potential substrate for addition of extra sugar moieties. No large beta subunit forms have been found by others, while large alpha subunits have been described both clinically and in tissue culture systems. These observations imply that the conformation of the free alpha subunit, in the regions of the glycosylation recognition sites, allows easier access for glycosyltransferases than those same sites in the beta subunit. When alpha is combined with beta, the local structures around the alpha glycosylation sites are apparently altered so as to make the synthesis of triantennary chains less favorable.  相似文献   

6.
Inhibin B is a testicular peptide hormone that regulates FSH secretion in a negative feedback loop. Inhibin B is a dimer of an alpha and a beta(B) subunit. In adult testes, the cellular site of production is still controversial, and it was hypothesized that germ cells contribute to inhibin B production. To determine which cell types in the testes may produce inhibin B, the immunohistochemical localization of the two subunits of inhibin B were examined in adult testicular biopsies with normal spermatogenesis, spermatogenic arrest, or Sertoli cell only (SCO) tubules. Moreover, using in situ hybridization with mRNA probes, the mRNA expression patterns of inhibin alpha and inhibin/activin beta(B) subunits have been investigated. In all testes, Sertoli cells and Leydig cells showed positive immunostaining for inhibin alpha subunit and expressed inhibin alpha subunit mRNA. Using inhibin beta(B) subunit immunoserum on testes with normal spermatogenesis and with spermatogenic arrest, intense labeling was located in germ cells from pachytene spermatocytes to round spermatids but not in Sertoli cells. Inhibin beta(B) subunit mRNA expression was intense in germ cells from spermatogonia to round spermatids and in Sertoli cells in these testes. In testes with SCO, high inhibin beta(B) subunit mRNA labeling density was observed in both Sertoli cells and Leydig cells, whereas beta(B) subunit immunostaining was negative for Sertoli cells and faintly positive for Leydig cells. These results agree with the recent opinion that inhibin B in adult men is possibly a joint product of Sertoli cells and germ cells.  相似文献   

7.
BACKGROUND: Several human chorionic gonadotropin (hCG) derivatives have been detected in healthy human subjects, indicating that they may play a role in cell function. These hCG derivatives include deglycosylated hCG, proteolytic digestion products of hCG and free alpha and beta subunits of the hormone. It is well documented that testicular Leydig cells are responsive to luteinising hormone (LH) or its analogue hCG. These hormones have high affinity for LH/hCG receptors on the plasma membrane. METHODS: We designed functional and binding studies to compare the effects of native hCG and several hCG derivatives on a rat Leydig cell system. The molecular weight of the hCG derivatives was determined by SDS-PAGE and the binding affinity to LH/hCG receptors was measured by a radioligand assay. In addition, their ability to produce testosterone, cyclic AMP and arachidonic acid release was also studied. RESULTS: These hCG derivatives, with the exception of the free beta subunit, were able to bind to LH/hCG plasma membrane receptors with different affinities than that of native hCG. In addition, hCG derivatives did not increase intracellular cAMP levels or arachidonic acid release. However, they did increase testosterone production. CONCLUSION: Taken together, the results of this study lead us to suggest that these hCG derivatives may regulate the action of the native hormone in Leydig cells and are, thus, molecules of physiological relevance.  相似文献   

8.
The four human glycoprotein hormones are heterodimers that contain a common alpha subunit and a hormone-specific beta subunit. Within this hormone family, 23 amino acid sequences from 11 mammalian species are available. There are 19 invariant amino acid residues in the beta subunits, 12 of which are Cys that form six disulfide bonds. Of the remaining seven conserved amino acid residues, we have investigated the role of an Asp which occurs at position 99 in human choriogonadotropin beta (hCG beta). Site-directed mutagenesis was used to replace hCG beta Asp99 with three residues, Glu, Asn, and Arg, and to prepare an inversion double mutant protein, Arg94----Asp and Asp99----Arg. The cDNAs were placed in a eukaryotic expression vector, and the plasmids were transiently transfected into Chinese hamster ovary cells containing a stably integrated gene for bovine alpha. Radioimmunoassays demonstrated that the mutant forms of hCG beta were capable of subunit assembly to the same extent as hCG beta wild type. The heterologous heterodimers were assayed in vitro using transformed mouse Leydig cells (MA-10) by competitive inhibition of 125I-hCG binding and stimulation of progesterone production. The gonadotropins containing Glu and Asn were active, although the potency was less than that associated with the hCG beta wild type-containing gonadotropin. In contrast, the Arg99-containing mutant protein and the inversion mutant protein Asp94/Arg99 were devoid of activity. Thus, in hCG beta Asp99 can be substituted with certain residues without total loss of function, although replacement with a positively charged residue leads to an inactive heterodimer. The primary role of Asp99 in hCG beta seems to involve, either directly or indirectly, receptor recognition.  相似文献   

9.
A previous report from this laboratory showed that binding of iodine-labeled human choriogonadotropin to Leydig tumor cells is not a reversible process (Ascoli, M., and Puett, D. (1978) J. Biol. Chem. 253, 4892--4899). Most of the cell-bound hormone was found to be degraded to 3'-monoiodotyrosine before being released from the cells, and the degradation process could be inhibited by the lysosomotropic agents NH4Cl, chloroquine, and Triton WR-1339. It is reported herein that the degradation of receptor-bound human choriogonadotropin is an energy-dependent process, which can be inhibited by compounds that interfere with glycolysis or oxidative phosphorylation (e.g. NaF, NaN3, NaCN, and 2-deoxyglucose). Hormone degradation is also inhibited by some protease inhibitors such as the chloromethyl ketones of lysine and phenylalanine, but not by specific trypsin inhibitors (e.g. p-aminobenzamidine and p-tosyl-L-arginine methyl ester). With the exception of NH4Cl, it was found that the compounds which inhibit hormone degradation also inhibit hormone-stimulated steroidogenesis. However, the present results involving dose dependency, and those given in the following paper (Ascoli, M. (1978) J. Biol. Chem. 253, 7839--7843), indicate that these two phenomena are not related.  相似文献   

10.
The gonadotropins luteinizing hormone, follicle-stimulating hormone, and human chorionic gonadotropin are composed of two noncovalently linked subunits, alpha and beta. The alpha subunit, identical in all three hormones, is produced in excess over the unique beta subunits by pituitary and placenta, and is secreted as uncombined, or free subunit. Free alpha subunit from both tissues has a larger molecular weight than the dimer form. In bovine pituitary an extra O-linked oligosaccharide is added to free alpha subunit, and this modification has recently been detected at an analogous position (threonine 39) on human alpha subunit secreted by choriocarcinoma cells. To assess the contribution of N-linked and O-linked oligosaccharides to the heterogeneity of human free alpha subunit, we have compared free alpha with human chorionic gonadotropin alpha secreted by explants and cultured cytotrophoblasts of human first trimester placenta. We have also examined the free and combined forms of human alpha subunit expressed in transfected C-127 mouse mammary tumor cells. Processing of the alpha subunit in placental and C-127 cells was similar. Tryptic mapping of placental-derived and transfected alpha subunits indicated that O-glycosylation at threonine 39 was not a major modification. In the presence of the oligosaccharide processing inhibitor swainsonine the difference in size between the free and combined forms of alpha was eliminated in both placental and C-127 cells, indicating that the two forms of alpha differed in their N-linked oligosaccharides. Furthermore, the oligosaccharides of free alpha subunits from placental and transfected cells were resistant to endoglycosidase H, but the combined forms of alpha were partially sensitive to the enzyme. Thus, in human first trimester placenta and mouse C-127 cells, combination of alpha with human chorionic gonadotropin beta alters the processing of N-linked oligosaccharides on alpha subunit.  相似文献   

11.
A complex between bovine lutropin (LH) and monovalent antibodies (Fab fragments) directed against its alpha subunit, which is common to the glycoprotein hormones, has been purified by gel filtration and chromatography on concanavalin A-Sepharose. The complex is heterogenous with respect to molecular size; 70--80% of the hormone is complexed with either two or three Fab fragments. The LH-Fab alpha complexes retain only about 13% receptor binding activity as compared to LH when measured in a radioligand receptor assay in which the radiolabeled ligand is human choriogonadotropin. (Use of the human hormone as labeled ligand permits direct measurement of competition between receptor and the bovine complex because the alpha portion of the human hormone does not cross react significantly with antibodies directed against bovine alpha subunits.) Complex formation does not lead to dissociation of the lutropin into its subunits, as shown with a homologous LH-beta immunoassay which distinguishes free beta subunit from intact LH. Complexing of LH with Fab-alpha fragments also causes little or no change in the affinity of the hormone's beta subunit for anti-LH-beta antibodies indicating that significant changes in beta subunit conformation did not occur. The data show that at least two well-separated antigenic regions on the alpha subunit are exposed to the surface in the intact hormone. They are also in agreement with the proposal that the loss of binding activity to receptor is due to steric effects rather than to changes in conformation or dissociation, and that there may be sites on the alpha subunit which interact directly with the receptor.  相似文献   

12.
The accessibility of the asparagine-linked carbohydrate chains of human thyrotropin (hTSH) and free alpha and beta subunits was investigated by their susceptibility to endoglycosidases H and F as well as to peptide:N-glycosidase F. Iodinated hTSH or subunits were incubated with a commercial enzyme preparation containing both endoglycosidase F and N-glycosidase F activities and further analyzed by sodium dodecyl sulfate gel electrophoresis followed by quantitative autoradiography. We show that, working at the optimum of the N-glycosidase activity, the relative amount of endoglycosidase required for half-deglycosylation was 20-fold higher for native hTSH than for the reduced and dissociated subunits. Under nondenaturing conditions, the 18K beta subunit of hTSH could be readily deglycosylated to a 14K species while the 22K alpha subunit was largely resistant. However, both subunits were converted to an apoprotein of similar apparent molecular weight of 14K following reduction of disulfide bonds. In contrast, the free alpha subunit of human choriogonadotropin appeared fully sensitive to carbohydrate removal under nonreducing conditions despite the presence of a partially deglycosylated 18K intermediate at low concentration of endoglycosidase. Similarly, both hTSH-alpha and hTSH-beta could be completely deglycosylated after acid dissociation of the native hormone. While all three carbohydrate chains of hTSH are sensitive to pure peptide:N-glycosidase F, only one on alpha and the single oligosaccharide present on beta in hTSH appeared to be cleaved by pure endoglycosidase F. Interestingly, one of the two carbohydrate chains present on alpha was also found to be susceptible to endoglycosidase H.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Lutropin (LH) and human choriogonadotropin (hCG) share the same receptor and stimulate testosterone production in porcine Leydig cells in primary culture. Cells were pulsed with [125I]LH or [125I]hCG. During the chase, more than 80% of cell-bound LH consisted in internalized material which was degraded and excreted (half-time: 25 min) NH4Cl largely inhibited this degradation. On the contrary, hCG remained essentially bound to the cell surface and was not degraded by the cells with or without NH4Cl up to 160 min.  相似文献   

14.
We demonstrate that a novel integrin beta subunit is present in association with the vitronectin receptor (VNR) alpha subunit on the surface of MG-63 human osteosarcoma cells. This beta subunit and the glycoprotein IIIa beta subunit (beta 3) were both found complexed with VNR alpha on MG-63 cells and in at least two other human cell types we examined. Tryptic peptide mapping indicated that the two beta subunits are related but distinct. The novel beta chain, referred to here as beta s, was not recognized by the monoclonal antibody AP3, which recognizes GPIIIa, nor by an antiserum raised against a peptide from the COOH-terminal cytoplasmic domain of beta 3. Both receptor complexes bound to and were specifically eluted from a column containing the cell adhesion peptide GRGDSP. The unique beta subunit became phosphorylated at high stoichiometry when MG-63 cells or AG1523 human fibroblasts were treated with the phorbol-ester tumor promoter phorbol 12-myristate 13-acetate. This phosphorylation occurred mainly on serine and probably at one major site, as determined by phosphotryptic peptide mapping. Protein kinase C phosphorylated the beta s subunit of intact receptor in vitro, at the same site phosphorylated in treated cells, indicating that protein kinase C is likely to be responsible for this phosphorylation in vivo.  相似文献   

15.
The glycoprotein hormones lutropin (LH) and chorionic gonadotropin (CG) share a common structure consisting of an identical alpha subunit noncovalently linked to a hormone-specific beta subunit. While LH is produced in the anterior pituitary, CG is synthesized in placenta. To compare the assembly, processing, and secretion of human LH and CG in the same cell type, we have expressed their subunits, individually and together, in mouse C-127 mammary tumor cells. Analysis of transfected clones revealed an unexpected difference in the secretion of individually expressed subunits. Whereas alpha and CG beta subunits were rapidly and quantitatively secreted, only 10% of newly synthesized LH beta subunit reached the medium. The remaining subunit was found in an intracellular, endoglycosidase H (endo H)-sensitive pool that had a turnover rate of approximately 8 h. Coexpression with alpha subunit resulted in "rescue" of LH beta subunit by formation of LH dimer, which was efficiently secreted. However, combination of LH beta with alpha was slow, with an overall efficiency of only 50% despite the presence of excess alpha. In contrast, CG beta was rapidly assembled with the alpha subunit after synthesis. The two beta subunits also differed in their influence on the N-linked oligosaccharide processing of combined alpha. The oligosaccharides of LH dimer were endo H resistant, while those of CG dimer remained partially endo H sensitive. Thus, despite a high degree of homology between LH beta and CG beta, the two subunits differ in their secretion as free subunits, their rate of assembly with alpha subunit, and in their effect on the N-linked oligosaccharide processing of combined alpha.  相似文献   

16.
Lutropin (LH) and human choriogonadotropin (hCG) share the same receptor and stimulate testosterone production in porcine Leydig cells in primary culture. Cells were pulsed with [125I]LH or [125I]hCG. During the chase, more than 80% of cell-bound LH consisted in internalized material which was degraded and excreted (half-time : 25 min) NH4Cl largely inhibited this degradation. On the contrary, hCG remained essentially bound to the cell surface and was not degraded by the cells with or without NH4Cl up to 160 min.  相似文献   

17.
The role of the high affinity receptor in the internalization of porcine lutropin (pLH) and human choriogonadotropin (hCG) by porcine Leydig cells in primary culture during short-term stimulation by the two hormones was investigated. The fate of the hormones was followed either by electron microscopy (with colloidal gold-labeled hormones) or by measurement of the cellular distribution of [125I]pLH and [125I]hCG. With both techniques, the internalization of pLH was found to be one order of magnitude greater than hCG, though the recycling rate of the high affinity receptors was the same with both hormones. However, when the cell surface was progressively depleted of its high affinity receptors by preincubation with increasing doses of hCG or pLH, the internalization of [125I]pLH remained high and largely independent of the number of high affinity receptors still available on the cell surface, while that of [125I]hCG was found to be proportional to this number. The endocytosis of [125I]pLH could only be inhibited by the simultaneous presence of micromolar concentrations of unlabeled pLH, hCG or alpha or beta subunits of ovine LH (oLH). The intact alpha-hCG subunit and the deglycosylated alpha-oLH subunit were less potent, while beta-hCG and deglycosylated beta-oLH had no significant effect. These results could be explained by the existence of a "carrier" or "scavenger" receptor for LH, but with a low affinity (congruent to 3.10(6) M-1) and present in excess on the cell surface as compared to the high affinity receptor. The possible physiological significance of this receptor is discussed.  相似文献   

18.
MAT II, the extrahepatic form of methionine adenosyltransferase (MAT), consists of catalytic alpha(2)/alpha(2') subunits and a noncatalytic beta subunit, believed to have a regulatory function. The full-length cDNA that encodes the beta subunit of human MAT II was cloned and found to encode for a 334-amino acid protein with a calculated molecular weight of 37,552. Analysis of sequence homology showed similarity with bacterial enzymes that catalyze the reduction of TDP-linked sugars. The beta subunit cDNA was cloned into the pQE-30 expression vector, and the recombinant His tagged protein, which was expressed in Escherichia coli, was recognized by antibodies to the human MAT II, to synthetic peptides copying the sequence of native beta subunit protein, and to the rbeta protein. There is no cross-reactivity between the MAT II alpha(2) or beta subunits. None of the anti-beta subunit antibodies reacted with protein extracts of E. coli host cells, suggesting that these bacteria have no beta subunit protein. Interestingly, the rbeta subunit associated with E. coli as well as human MAT alpha subunits. This association changed the kinetic properties of both enzymes and lowered the K(m) of MAT for L-methionine. Together, the data show that we have cloned and expressed the human MAT II beta subunit and confirmed its long suspected regulatory function. This knowledge affords a molecular means by which MAT activity and consequently the levels of AdoMet may be modulated in mammalian cells.  相似文献   

19.
The T cell receptor for antigen (TCR) is composed of six different transmembrane proteins. T cells carefully control the intracellular transport of the receptor and allow only complete receptors to reach the plasma membrane. In an attempt to understand how T cells regulate this process, we used c-DNA transfection and subunit-specific antibodies to follow the intracellular transport of five subunits (alpha beta gamma delta epsilon) of the receptor. In particular, we assessed the intracellular stability of each chain. Our results showed that the chains were markedly different in their susceptibility to intracellular degradation. TCR alpha and beta and CD3 delta were degraded rapidly, whereas CD3 gamma and epsilon were stable. An analysis of the N-linked oligosaccharides of the glycoprotein subunits suggested that the chains were unable to reach the medial Golgi during the metabolic chase. This was supported by immunofluorescence micrographs that showed both the stable CD3 gamma and unstable CD3 delta chain localized in the endoplasmic reticulum. To study the effects of subunit associations on intracellular transport we used cotransfection to reconstitute precise combinations of subunits. Associations between stable and unstable subunits expressed in the same cell led to the formation of stable complexes. These complexes were retained in or close to the endoplasmic reticulum. The results suggested that the intracellular transport of the T cell receptor could be regulated by two mechanisms. The TCR alpha and beta and CD3 delta subunits were degraded rapidly and as a consequence failed to reach the plasma membrane. CD3 gamma or epsilon were stable but were retained inside the cell. The results also demonstrated that there was an interplay between the two pathways such that the CD3 gamma and epsilon subunits were able to protect labile chains from rapid intracellular degradation. In this way, they could seed subunit assembly in or close to the endoplasmic reticulum and allow a stable receptor to form before its transport to the plasma membrane.  相似文献   

20.
Previous studies have demonstrated an imbalance in placental levels of the human choriogonadotropin (hCG) alpha and beta subunits. Free alpha subunit was present in first trimester placentae, and the imbalance was accentuated as gestation approached parturition. Two sets of experiments were performed to assess the control on production levels of each subunit. Synthesis of the alpha and beta subunits was assessed by labeling the nascent chains of polysomes derived from first trimester placenta. The products of these reactions were immunoprecipitated with subunit-specific antisera and the labeled subunits were quantitated; the ratio of alpha to beta subunit synthesized was 1.7. To examine whether this imbalanced synthesis reflected differences in the amount of subunit mRNAs, or differing mRNA translational efficiencies, the ratio of the steady state levels of these mRNAs was also determined. Total first trimester placental RNA was hydrolyzed with alkali, 5'-end-labeled with 32P, and hybridized in DNA excess to cloned alpha and beta cDNAs. These experiments demonstrated the presence of twice as much hCG-alpha mRNA as hCG-beta mRNA. In term placenta, the amounts of excess alpha subunit are greater than at first trimester; the ratio of alpha to beta mRNAs in term RNA was about 12:1. Thus, the subunit mRNA levels are independently regulated and their imbalance accounts for differences in the quantities of alpha and beta subunits seen in placental tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号