首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Excessive softness is a serious defect of dry cured hams which seems related to high activity of lysosomal cysteine proteinases, such as cathepsin B, in fresh pork muscles a few days after slaughtering. As it has been shown that cathepsin B activity has a moderate heritability in Italian Large White pigs we started a candidate gene approach to identify the gene(s) that affect(s) this parameter. Here, we studied two candidate genes: cathepsin B (CTSB) and cystatin B (CSTB). We amplified and sequenced porcine DNA fragments for these two genes that were used to identify polymorphisms by SSCP and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Four and two alleles were detected at the CTSB and CSTB loci, respectively. Sequencing of the CSTB alleles showed a missense mutation that changes a codon for aspartic acid into a codon for asparagine in exon 3 of the gene. Allele frequencies for the two loci differed among the pig breeds studied (Large White, Landrace, Duroc, Belgian Landrace, Hampshire, Piétrain, Meishan, Cinta Senese, Casertana, Calabrese and Nero di Sicilia). Linkage, somatic cell hybrid panel and radiation hybrid panel analyses assigned CTSB to porcine chromosome (Sscr) 14 and CSTB to Sscr 13. The markers identified at the CTSB and CSTB loci were used in association studies with several traits of economic importance including parameters that may indicate the suitability of pig meat to produce dry-cured hams. Significant associations were observed between CTSB and back-fat thickness and between CSTB and average daily gain. In this study, cathepsin B activity was not associated with the polymorphisms identified at the CTSB and CSTB loci.  相似文献   

2.

Background

Cathepsin B (CTSB), a member of the cathepsin family, is a cysteine protease that is widely distributed in the lysosomes of cells in various tissues. It is overexpressed in several human cancers and may be related to tumorigenesis. The main purpose of this study was to analyze CTSB expression in oral squamous cell carcinoma (OSCC) and its correlation with patient prognosis.

Methodology/Principal Findings

Tissue microarrays were used to detect CTSB expression in 280 patients and to examine the association between CTSB expression and clinicopathological parameters. In addition, the metastatic effects of the CTSB knockdown on two oral cancer cell lines were investigated by transwell migration assay. Cytoplasmic CTSB expression was detected in 34.6% (97/280) of patients. CTSB expression was correlated with positive lymph node metastasis (p = 0.007) and higher tumor grade (p = 0.008) but not with tumor size and distant metastasis. In addition, multivariate analysis using a Cox proportional hazards model revealed a higher hazard ratio, demonstrating that CTSB expression was an independent unfavorable prognostic factor in buccal mucosa carcinoma patients. Furthermore, the Kaplan–Meier curve revealed that buccal mucosa OSCC patients with positive CTSB expression had significantly shorter overall survival. Moreover, treatment with the CTSB siRNA exerted an inhibitory effect on migration in OC2 and CAL27 oral cancer cells.

Conclusions

We conclude that CTSB expression may be useful for determining OSCC prognosis, particularly for patients with lymph node metastasis, and may function as a biomarker of the survival of OSCC patients in Taiwan.  相似文献   

3.
Saposin C deficiency, a rare variant form of Gaucher disease, is due to mutations in the prosaposin gene (PSAP) affecting saposin C expression and/or function. We previously reported that saposin C mutations affecting one cysteine residue result in autophagy dysfunction. We further demonstrated that the accumulation of autophagosomes, observed in saposin C-deficient fibroblasts, is due to an impairment of autolysosome degradation, partially caused by the reduced amount and enzymatic activity of CTSB (cathepsin B) and CTSD (cathepsin D). The restoration of both proteases in pathological fibroblasts results in almost completely recovery of autophagic flux and lysosome homeostasis.  相似文献   

4.
5.
6.
7.
Hepatitis B spliced protein (HBSP) is involved in the pathogenicity and/or persistence of hepatitis B virus (HBV). Chronic HBV infection is one of the most important risk factors for the development of hepatocellular carcinoma (HCC). However, whether or not HBSP contributes to the progression of HBV-associated HCC remains unknown. This study reports that overexpression of HBSP in human hepatoma cells increased cell invasion and motility. Conversely, small interfering RNA (siRNA)-mediated knockdown of HBSP expression inhibited migration and invasion. By glutathione S-transferase (GST) pulldown, coimmunoprecipitation, and a mammalian two-hybrid assay, HBSP was found to directly interact with cathepsin B (CTSB). Similar to HBSP knockdown, knocking down CTSB also reduced cell migration and invasion. Furthermore, the HBSP-overexpressing hepatoma cells were shown to have increased expression and activity of matrix metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator (uPA), and overexpression of HBSP significantly enhanced tumor-induced vascularization of endothelial cells. In contrast, knockdown of either HBSP or CTSB by siRNA resulted in inhibition of the two proteolytic enzymes and of the in vitro angiogenesis. Expression of HBSP in the hepatoma cells appeared to activate the mitogen-activated protein kinase (MAPK) and Akt signaling pathway, as evidenced by increases in phosphorylation of p38, Jun N-terminal protein kinase (JNK), extracellular signal-regulated kinase (ERK), and Akt. Taken together, these findings imply that interaction of HBSP with CTSB may promote hepatoma cell motility and invasion and highlight new molecular mechanisms for HBSP-induced HCC progression that involve the secretion and activation of proteolytic enzymes, increased tumor-induced angiogenesis, and activation of the MAPK/Akt signaling, thereby leading to the aggressiveness of hepatoma cells.  相似文献   

8.
9.
为研究溶酶体组织蛋白酶B(cathepsin B,CTSB)对脂肪细胞分化的影响,本实验构建了Ctsb重组腺病毒超表达载体,包装并侵染体外培养的猪前体脂肪细胞,采用油红O染色,油红O提取比色法检测猪前体脂肪细胞分化的情况,并通过real-time PCR法检测成脂关键基因mRNA水平的变化.结果显示,重组腺病毒Ctsb载体构建成功,转染猪前体脂肪细胞后,使Ctsb的mRNA和蛋白质表达量分别提高了约16倍和12倍. CTSB超表达能促进脂肪细胞的分化和脂质积累,成脂关键基因过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor gamma, PPARγ)、脂肪酸结合蛋白2(adipocyte protein 2, aP2)的表达量均有显著升高. 研究表明,提高Ctsb的表达能促进猪前体脂肪细胞分化,揭示了Ctsb在猪前体脂肪细胞分化过程中可能发挥关键作用. 研究结果为进一步研究其作用机制奠定了基础.  相似文献   

10.
11.
An Italian family in which Waardenburg syndrome type II (WS2) segregates together with a der(8) chromosome from a (4p;8p) balanced translocation was studied. Cytogenetic analysis by painting and subtelomeric probe hybridization positioned the chromosome 8 breakpoint at p22-pter. Fluorescence in situ hybridization analysis with yeast artificial chromosomes from a contig spanning the 8p21-pter region refined the breakpoint in an interval of less than 170 kb between markers WI-3823 and D8S1819. The only cloned gene for WS2 is that for microphtalmia (MITF) on chromosome 3p. In this family, MITF mutations were excluded by sequencing the whole coding region. The 8p23 region may represent a third locus for WS2 (WS2C).  相似文献   

12.
Rose PP  Bogyo M  Moses AV  Früh K 《Journal of virology》2007,81(15):8050-8062
Kaposi's sarcoma-associated herpesvirus (KSHV) is the pathological agent of Kaposi's sarcoma (KS), a tumor characterized by aberrant proliferation of endothelial-cell-derived spindle cells. Since in many cancers tumorigenesis is associated with an increase in the activity of the cathepsin family, we studied the role of cathepsins in KS using an in vitro model of KSHV-mediated endothelial cell transformation. Small-molecule inhibitors and small interfering RNA (siRNA) targeting CTSB, but not other cathepsins, inhibited KSHV-induced postconfluent proliferation and the formation of spindle cells and foci of dermal microvascular endothelial cells. Interestingly, neither CTSB mRNA nor CTSB protein levels were induced in endothelial cells latently infected with KSHV. Secretion of CTSB was strongly diminished upon KSHV infection. Increased targeting of CTSB to endosomes was caused by the induction by KSHV of the expression of insulin-like growth factor-II receptor (IGF-IIR), a mannose-6-phosphate receptor (M6PR) that binds to cathepsins. Inhibition of IGF-IIR/M6PR expression by siRNA released CTSB for secretion. In contrast to the increased cathepsin secretion observed in most other tumors, viral inhibition of CTSB secretion via induction of an M6PR is crucial for the transformation of endothelial cells.  相似文献   

13.
Impairment of glucose-stimulated insulin secretion caused by the lipotoxicity of palmitate was found in β-cells. Recent studies have indicated that defects in autophagy contribute to pathogenesis in type 2 diabetes. Here, we report that autophagy-related 7 (Atg7) induced excessive autophagic activation in INS-1(823/13) cells exposed to saturated fatty acids. Atg7-induced cathepsin B (CTSB) overexpression resulted in an unexpected significant increase in proinflammatory chemokine and cytokine production levels of IL-1β, monocyte chemotactic protein-1, IL-6, and TNF-α. Inhibition of receptor-interacting protein did not affect the inflammatory response, ruling out involvement of necrosis. CTSB siRNA suppressed the inflammatory response but did not affect apoptosis significantly, suggesting that CTSB was a molecular linker between autophagy and the proinflammatory response. Blocking caspase-3 suppressed apoptosis but did not affect the inflammatory response, suggesting that CTSB induced inflammatory effects independently of apoptosis. Silencing of Nod-like receptor 3 (NLRP3) completely abolished both IL-1β secretion and the down-regulation effects of Atg7-induced CTSB overexpression on glucose-stimulated insulin secretion impairment, thus identifying the NLRP3 inflammasome as an autophagy-responsive element in the pancreatic INS-1(823/13) cell line. Combined together, our results indicate that CTSB contributed to the Atg7-induced NLRP3-dependent proinflammatory response, resulting in aggravation of lipotoxicity, independently of apoptosis in the pancreatic INS-1(823/13) cell line.  相似文献   

14.
We used chromosome paints from both the domestic cat and humans to directly establish chromosomal homology between the genome of these species and the domestic ferret. The chromosome painting data indicate that the ferret has a highly conserved karyotype closer to the ancestral carnivore karyotype than that of the cat. The cat chromosome paints revealed 22 homologous autosomal regions in the ferret genome: 16 ferret chromosomes were hybridized by a single cat paint, while 3 ferret chromosomes were hybridized by two cat paints. In situ hybridization combined with banding showed that ferret Chromosome (Chr) 1 = cat A2p/C2, Chr 2 = F2/C1q, and Chr 3 = A2q/D2. Five ferret chromosomes are homologous to single arms of cat chromosomes: ferret 4 = A1q, 5 = B1q, 6 = C1p, 10 = A1p, and 12 = B1p. The human chromosome paints revealed 32 + XY homologous regions in the ferret genome: 9 ferret chromosomes were each hybridized by a single human paint, 7 by two paints, 3 by three paints. The 10 ferret chromosomes hybridized by multiple human paints produced the following associations: ferret 1 = human 19/3/21, 2 = 8q/2q, 3 = 10/7, 5 = 8/4, 8 = 15/14, 9 = 10/12/22, 11 = 20/2, 12 = 8/4, 14 = 12/22/18, 18 = 19/16. We present an index of genomic diversity, Z, based on the relative number of conserved whole chromosome and chromosome segments as a preliminary statistic for rapid comparison between species. The index of diversity between human-ferret (Z = 0.812) is slightly less than human-cat (Z = 0.843). The homology data presented here allow us to transfer gene mapping data from both cats and humans to the ferret. Received: 21 December 1999 / Accepted: 30 May 2000  相似文献   

15.
Non-alcoholic fatty liver disease (NAFLD) has emerged as the most common chronic liver disease. NLRP3 inflammasome activation has been widely studied in the pathogenesis of NAFLD. Cathepsin B (CTSB) is a ubiquitous cysteine cathepsin, and the role of CTSB in the progression and development of NAFLD has received extensive concern. However, the exact roles of CTSB in the NAFLD development and NLRP3 inflammasome activation are yet to be evaluated. In the present study, we used methionine choline-deficient (MCD) diet to establish mice NASH model. CTSB inhibitor (CA-074) was used to suppress the expression of CSTB. Expressions of CTSB and caspase-1 were evaluated by immunohistochemical staining. Serum IL-1β and IL-18 levels were also determined. Palmitic acid was used to stimulate Kupffer cells (KCs), and protein expressions of CTSB, NLRP3, ASC (apoptosis-associated speck-like protein containing CARD), and caspase-1 in KCs were detected. The levels of IL-1β and IL-18 in the supernatant of KCs were evaluated by enzyme-linked immunosorbent assay (ELISA). Our results showed that CTSB inhibition improved the liver function and reduced hepatic inflammation and ballooning, and the levels of pro-inflammatory cytokines IL-1β and IL-18 were decreased. The expressions of CTSB and caspase-1 in liver tissues were increased in the NASH group. In in vitro experiments, PA stimulation could increase the expressions of CTSB and NLRP3 inflammasome in KCs, and CTSB inhibition downregulated the expression of NLRP3 inflammasome in KCs, when challenged by PA. Moreover, CTSB inhibition effectively suppressed the expression and activity of caspase-1 and subsequently secretions of IL-1β and IL-18. Collectively, these results suggest that CTSB inhibition limits NLRP3 inflammasome-dependent NASH formation through regulating the expression and activity of caspase-1, thus providing a novel anti-inflammatory signal pathway for the therapy of NAFLD.  相似文献   

16.
We previously reported molecular karyotype analysis of invasive breast tumour core needle biopsies by comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH) (Walker et al, Genes Chromosomes Cancer, 2008 May;47(5):405-17). That study identified frequently recurring gains and losses involving chromosome bands 8q22 and 8p21, respectively. Moreover, these data highlighted an association between 8q22 gain and typically aggressive grade 3 tumors. Here we validate and extend our previous investigations through FISH analysis of tumor touch imprints prepared from excised breast tumor specimens. Compared to post-surgical tumor excisions, core needle biopsies are known to be histologically less precise when predicting tumor grade. Therefore investigating these chromosomal aberrations in tumor samples that offer more reliable pathological assessment is likely to give a better overall indication of association. A series of 60 breast tumors were screened for genomic copy number changes at 8q22 and 8p21 by dual-color FISH. Results confirm previous findings that 8p loss (39%) and 8q gain (74%) occur frequently in invasive breast cancer. Both absolute quantification of 8q22 gain across the sample cohort, and a separate relative assessment by 8q22:8p21 copy number ratio, showed that the incidence of 8q22 gain significantly increased with grade (p = 0.004, absolute and p = 0.02, relative). In contrast, no association was found between 8p21 loss and tumor grade. These findings support the notion that 8q22 is a region of interest for invasive breast cancer pathogenesis, potentially harboring one or more genes that, when amplified, precipitate the molecular events that define high tumor grade.  相似文献   

17.
18.
RD‐N, an aminomethylated derivative of riccardin D, is a lysosomotropic agent that can trigger lysosomal membrane permeabilization followed by cathepsin B (CTSB)‐dependent apoptosis in prostate cancer (PCa) cells, but the underlying mechanisms remain unknown. Here we show that RD‐N treatment drives CTSB translocation from the lysosomes to the nucleus where it promotes DNA damage by suppression of the breast cancer 1 protein (BRCA1). Inhibition of CTSB activity with its specific inhibitors, or by CTSB‐targeting siRNA or CTSB with enzyme‐negative domain attenuated activation of BRCA1 and DNA damage induced by RD‐N. Conversely, CTSB overexpression resulted in inhibition of BRCA1 and sensitized PCa cells to RD‐N‐induced cell death. Furthermore, RD‐N‐induced cell death was exacerbated in BRCA1‐deficient cancer cells. We also demonstrated that CTSB/BRCA1‐dependent DNA damage was critical for RD‐N, but not for etoposide, reinforcing the importance of CTSB/BRCA1 in RD‐N‐mediated cell death. In addition, RD‐N synergistically increased cell sensitivity to cisplatin, and this effect was more evidenced in BRCA1‐deficient cancer cells. This study reveals a novel molecular mechanism that RD‐N promotes CTSB‐dependent DNA damage by the suppression of BRCA1 in PCa cells, leading to the identification of a potential compound that target lysosomes for cancer treatment.  相似文献   

19.
We recently reported the isolation of human β-defensin-2 (hBD-2), a novel epithelia-derived peptide antibiotic belonging to the β-defensin family. hBD-2 is expressed in skin and epithelia of the airway system, where it is believed to contribute to its antimicrobial defense. By fluorescencein situhybridization using a hBD-2 genomic DNA probe and subsequent fluorescence R-banding, the hBD-2 gene (HGMW-approved symbol DEFB2) was assigned to human chromosome region 8p22–p23.1. PCR with a set of CEPH YAC clones spanning this chromosomal region revealed CEPH YACs 773G4, 920D12, and 820B4 to contain the hBD-2 gene. Relying on the preexisting physical maps of 8p22–p23.1, the hBD-2 gene was mapped in close proximity to D8S1993 (WI-9956) within the interval flanked by D8S552 and D8S1130 (CHLC.GATA25C10). The fact that all currently described genes encoding defensins map to chromosome 8p21–pter suggests that a gene cluster in this chromosomal region may play a major role in antimicrobial defense.  相似文献   

20.
Oxidative stress-mediated activation of NLRP3 inflammasome in microglia is critical in the development of neurodegerative diseases such as Alzheimer's disease (AD), Parkinson disease (PD). However, the mechanism underlying oxidative stress activates NLRP3 inflammasome remains exclusive. Here we demonstrated cathepsin B (CTSB) as a regulator of the activation of NLRP3 inflammasome by H2O2·H2O2 induced IL-1β secretion in NLRP3 inflammasome-dependent manner·H2O2 treatment increased CTSB activity, which in turn activated NLRP3 inflammasome, and subsequently processed pro-caspase-1 cleavage into caspase-1, resulting in IL-1 β secretion. Genetic inhibition or pharmacological inhibition of CTSB blocked the cleavage of pro-caspase-1 into caspase-1 and subsequent IL-1 β secretion induced by H2O2. Importantly, CTSB activity, IL-1β levels and malondialdehyde (MDA) were remarkably elevated in plasma of AD patients compared to healthy controls, while glutathione was significantly lower than healthy controls. Correlation analyses showed that CTSB activity was positively correlated with IL-1β and MDA levels, but negatively correlated with GSH levels in plasma of AD patients. Taken together, our results indicate that oxidative stress activates NLRP3 through upregulating CTSB activity. Our results identify an important biological function of CTSB in neuroinflammation, suggesting that CTSB is a potential target in AD therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号