首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barley was grown at a range of oxygen concentrations (0.5–9mg l–1), in nutrient solutions. Growth of both shootsand seminal roots was restricted by O2 concentrations lowerthan 2–3 mg l–1) but nodal root growth was not. Root porosities were increased even at those O2 concentrationswhich did not restrict growth, and were inversely proportionalto the protein levels of the roots. Sugar concentrations increasedappreciably only at those O2 concentrations which also restrictedgrowth. Hordeum vulgare L., barley, root porosity, sugar, protein, oxygen concentration  相似文献   

2.
Barley and rice, at the early tillering stage, were grown inaerated nutrient solutions (> 7 mg O2 l–1) and transferredto solutions of low O2 concentrations (< 0.5 mg l –1). For barley, low O2 concentrations during the first 5 days severelyinhibited growth of seminal roots had less effect on nodal roots,and did not reduce shoot growth. Longer exposure to low O2 concentrationsreduced shoot as well as root growth. Sugar concentrations inroots and shoots increased within 7 h after transfer of plantsto low O2 concentrations. After 5 days at low O2 concentrationssugar concentrations were very high in fast growing nodal rootsand in shoots, as well as in the slower growing seminal roots. In rice, low O2 concentrations increased sugar levels of rootsduring summer, but not during winter. In summer, the highersugar levels at low O2 concentrations persisted throughout adiurnal cycle. In root apices, sugar concentrations were increasedby low O2 concentrations, even though the experiment was donein winter and the bulk of the root system showed no differencein sugar levels. The data indicate that sugar accumulation, at low O2 concentrations,is caused by reduced growth and also that even apices of rootsgrown at low O2 concentrations have sufficient substrates forrespiration. Hordeum vulgare L, barley, Oryza sativa L, rice, sugar accumulation, oxygen concentration  相似文献   

3.
Barley (Hordeum vulgare L. cv. Golf) plants were grown at twodifferent relative addition rates; 0.1 and 0.2 d–1 ofnitrate. Three to five days before measurements started theplants were transferred to a nutrient solution with 2 mM nitrateor ammonium. The ammonium-grown plants showed increased ammoniumlevels in both shoots and roots and also increased ammoniumconcentrations in xylem sap. Ammonia emission measured in cuvettes connected to an automaticNH3 monitor was close to zero for nitrate-grown plants but increasedto 0.59 and 0.88 nmol NH3 m–2 S–1 for plants transferredto ammonium after growing at RA=0.2 and 0.1 d–1, respectively.In darkness, NH3 emission decreased together with photosynthesisand transpiration, but increased rapidly when the light wasturned on again. Addition of 0.5 mM methionine sulphoximine (MSO) to the plantscaused an almost complete inhibition of both root and shootglutamine synthetase (GS) activity after 24 h. Ammonia emissionincreased dramatically and photosynthesis and transpirationdecreased in both nitrate- and ammonium-grown plants as a resultof the GS inhibition. At the same time plant tissue and xylemsap ammonium concentrations increased, indicating the importanceof GS in controlling plant ammonium levels and thereby NH3 emissionfrom the leaves. Key words: Hordeum vulgare, ammonia emission, ammonium, glutamine synthetase, nitrogen nutrition, photosynthesis, transpiration  相似文献   

4.
L-Tyrosine carboxy-lyase (E.C. 4. 1. 1. 25) was isolated fromroots of germinating barley (Hordeum vulgare). The enzyme requirespyridoxal phosphate for maximum activity. The optimum pH foractivity is about 7.0. The enzyme is inhibited by p-chloromercuribenzoateand hydroxylamine at 10–3 M. Enzyme activity is foundin extracts from young roots, especially from those in earlystages of development, but not in extracts from shoots of thesame plant. Localization and changes in the amounts of L-tyrosinecarboxy-lyase and aromatic amines in developing barley seedlingswere measured. Participation of carboxy-lyase in the formationof aromatic amines in barley roots is suggested. (Received July 17, 1970; )  相似文献   

5.
Pearson, J. and Havill, D. C. 1988. The effect of hypoxia andsulphide on culture-grown wetland and non-wetland plants. II.Metabolic and physiological changes.—J. exp. Bot. 39:431–439. Two non-wetland (Agropyron pungens, Hordeum vulgare) and fivewetland species (Oryza sativa, Aster tripolium, three Salicorniaspp.) were grown in aerated, unaerated and sulphide-treatedculture solution. Changes in the activity of alcohol dehydrogenase(ADH) and cytochrome oxidase (COase) in the roots were measured.In the non-wetland species, treatment with hypoxia or sulphideincreased ADH activity by 900–1 800%, whereas COase activitydecreased by 80–92% of the aerated control. In the wetlandspecies, except S. europaea which was not affected, hypoxiaincreased ADH activity by 350–550%, while COase activitywas little affected. Generally, when treated with sulphide theactivity of ADH increased to about 750% in most of the wetlandspecies, but increases as low as 175% (S. europaea) and as highas 1400% (S.fragilis) were recorded. The effect of sulphideon the COase activity in the wetland plants was not as markedas in the non-wetland plants. The Salicornia spp. were the leastaffected by the sulphide treatment and they also had intrinsicallyhigher levels of COase activity than the other species sampled.Of the wetland plants the Salicornia species had the lowestvalue for root aerenchyma, 3–6%. Therefore, there wasno correlation between the possession of aerenchyma and thephysiological changes measured. Measurement of malate, lactateand ethanol in roots of the first four species listed abovegave no evidence for alternative anaerobic fermentation pathways.While in the flood-intolerant species, high ADH activities werenot able to maintain the energy charge. It is suggested thatmaintenance of relatively high COase activity in wetland plantsmay help to ‘scavenge’ any available oxygen withinroots and thus help reduce energy loss. Key words: Cytochrome oxidase, alcohol dehydrogenase, metabolic adaptation  相似文献   

6.
15N labelling was used to investigate the pathway of nitrogenassimilation in photorespiratory mutants of barley (Hordeumvulgare cv. Maris Mink), in which the leaves have low levelsof glutamine synthetase (GS) or glutamate synthase, key enzymesof ammonia assimilation. These plants grew normally when maintainedin high CO2, but the deletions were lethal when photorespirationwas initiated by transfer to air. Enzyme levels in roots weremuch less affected, compared to leaves, and assimilation oflabelled nitrate into amino acids of the root showed very littledifference between wild type and mutants. Organic nitrogen wasexported from roots in the xylem sap mainly as glutamine, levelsof which were somewhat reduced in the GS-deficient mutant andenhanced in the glutamate synthase deficient mutant. In theleaf, the major effect was seen in the glutamatesynthase mutant,which had an extremely limited capacity to utilize the importedglutamine and amino acid synthesis was greatlyrestricted. Thiswas confirmed by the supply of [15N]-glutamine directly to leaves.Leaves of the GS-deficient mutant assimilatedammonia at about75% the rate found for the wild type, and this was almost completelyeliminated by addition of the inhibitormethionine sulphoximine.Root enzymes, together with residual levels of the deleted enzymesin the leaves, have sufficient capacityfor ammonia assimilation,through the glutamate synthase cycle, to provide adequate inputof nitrogen for normal growth of themutants, if photorespiratoryammonia production is suppressed. Key words: Hordeum vulgare, 15N, glutamine synthetase, glutamate synthase, ammonia assimilation  相似文献   

7.
Barley plants were grown in nutrient solution at two contrastingnitrate concentrations to produce plants of low or high nitrogen(N) status. Leaves were then exposed continuously to either0.3 mm3 dm–3 NO2 or clean air, with the roots and rootingmedium isolated from the polluted air. Uptake of NO2 was measuredin two ways; as depletion from an air stream containing thegas and using 15N-labelled NO2. Results from the two methodsagreed well and demonstrated that the flux of NO2 into the leavesof N-deficient barley was lower than that of N-sufficient plants.Nevertheless, the relative contribution of15N derived from 15NO2to the N status of the plant was greater in the plants suppliedwith low nitrate. A major factor in regulating NO2 uptake bybarley leaves appeared to be stomatal conductance, althoughinternal conductance may also be involved. The effects of NO2exposure of barley on carbon dioxide exchange rates, transpirationand water vapour conductance were also influenced by the N statusof the plant. Key words: Hordeum vulgare, 15N-labelled NO2, carbon dioxide exchange, transpiration  相似文献   

8.
This paper deals with the responses of roots of wheat {Triticumaestivum L.) to hypoxia with special emphasis on the effectsof severe O2 deficiency on membrane integrity, loss of K+ fromthe root and root membrane potentials. Seminal and crown roots of 26-d-old plants exposed to severehypoxia (0.003 mol O2 m–3) for 3 h or 10 d prior to excisionand subsequently exposed to hypoxic solutions, had slightlylower rates of sorbitol influx and a slightly smaller apparentfree space than roots in aerated solutions. These results indicatethat neither a few hours nor a 10-d exposure to hypoxia hadadverse effects on the membrane integrity of the bulk of thecells in the roots. However, both 6-d-old seedlings and 26-d-oldplants lost K+ from the roots following their transfer fromaerated to hypoxic nutrient solutions. In the 26-d-old plants,which were of high nutritional status, there was a net K+ effluxfrom the roots to the external solution. In contrast, with the6-d-old seedlings, which were of low nutritional status, thedecrease in the K+ content of the roots was smaller than thenet K+ uptake to the shoots. Exposure of excised roots to 0.008 mol O2 m3caused arapid and reversible membrane depolarization from –120to ––80 mV. These data and the magnitude of thenet effluxes strongly suggest that K+ losses during the earlystages of hypoxia are due to membrane depolarization ratherthan to increases in the permeability of membranes to K +. Key words: Hypoxia, membrane integrity, membrane potentials, seminal and crown roots  相似文献   

9.
COLMER  T. D. 《Annals of botany》2003,91(2):301-309
The present study evaluated waterlogging tolerance, root porosityand radial O2 loss (ROL) from the adventitious roots, of sevenupland, three paddy, and two deep-water genotypes of rice (Oryzasativa L.). Upland types, with the exception of one genotype,were as tolerant of 30 d soil waterlogging as the paddyand deep-water types. In all but one of the 12 genotypes, thenumber of adventitious roots per stem increased for plants grownin waterlogged, compared with drained, soil. When grown in stagnantdeoxygenated nutrient solution, genotypic variation was evidentfor root porosity and rates of ROL, but there was no overalldifference between plants from the three cultural types. Adventitiousroot porosity increased from 20–26 % for plants grownin aerated solution to 29–41 % for plants grown instagnant solution. Growth in stagnant solution also induceda ‘tight’ barrier to ROL in the basal regions ofadventitious roots of five of the seven upland types, all threepaddy types, and the two deep-water types. The enhanced porosityprovided a low resistance pathway for O2 movement to the roottip, and the barrier to ROL in basal zones would have furtherenhanced longitudinal O2 diffusion towards the apex, by diminishinglosses to the rhizosphere. The plasticity in root physiology,as described above, presumably contributes to the ability ofrice to grow in diverse environments that differ markedly insoil waterlogging, such as drained upland soils as well as waterloggedpaddy fields.  相似文献   

10.
Nine species from the tribe Triticeae – three crop, three pasture and three ‘wild’ wetland species – were evaluated for tolerance to growth in stagnant deoxygenated nutrient solution and also for traits that enhance longitudinal O2 movement within the roots. Critesion marinum (syn. Hordeum marinum) was the only species evaluated that had a strong barrier to radial O2 loss (ROL) in the basal regions of its adventitious roots. Barriers to ROL have previously been documented in roots of several wetland species, although not in any close relatives of dryland crop species. Moreover, the porosity in adventitious roots of C. marinum was relatively high: 14% and 25% in plants grown in aerated and stagnant solutions, respectively. The porosity of C. marinum roots in the aerated solution was 1·8–5·4‐fold greater, and in the stagnant solution 1·2–2·8‐fold greater, than in the eight other species when grown under the same conditions. These traits presumably contributed to C. marinum having a 1·4–3 times greater adventitious root length than the other species when grown in deoxygenated stagnant nutrient solution or in waterlogged soil. The length of the adventitious roots and ROL profiles of C. marinum grown in waterlogged soil were comparable to those of the extremely waterlogging‐tolerant species Echinochloa crus‐galli L. (P. Beauv.). The superior tolerance of C. marinum, as compared to Hordeum vulgare (the closest cultivated relative), was confirmed in pots of soil waterlogged for 21 d; H. vulgare suffered severe reductions in shoot and adventitious root dry mass (81% and 67%, respectively), whereas C. marinum shoot mass was only reduced by 38% and adventitious root mass was not affected.  相似文献   

11.
Root growth of barley (Hordeum vulgare L., cv. Akashinriki)was inhibited by 200 raM NaCl, when 1 mM CaCl2 was present inthe hydroponic culture solution. Increasing the CaCl2 up to10 mM partially prevented this inhibition. However, inhibitionalso occurred with 100 mM NaCl in the presence of 0.1 mM CaCl2.The nuclei of meristematic cells in roots in which growth hadbeen inhibited by salt stress were studied after staining withDAPI (4',6-diamino-2-phenylindol). Nuclear deformation of thecells occurred with 12 h of salt stress with 500 mM NaCl, andwas followed by degradation. The nuclear degradation was alsoobserved when the roots were exposed to more than 300 mM NaClfor 24 h. Biochemical analysis revealed that nuclear degradationwas accompanied by apoptosis-like DNA fragmentation. The intracellularmechanisms of nuclear degradation in cells after salt stressare discussed. 1Emertius professor, Okayama University.  相似文献   

12.
C4 cereals (Zea maya L. and Sorghum bicolor L. Moench) and C3cereals (Triticum aestivum L. and Hordeum vulgare L) were grownin nutrient solutions with constant, interrupted, or absentpotassium supply. The lack of potassium retarded shoot growthand depressed the chlorophyll accumulation in all species ina similar way. After the renewal of potassium, the differencesin the compensation for growth retardation were not correlatedwith the photosynthetic system, but with the recovery of chlorophyllaccumulation in younger leaves. As important for the compensationof shoot growth retardation was a slower senescence of old leavescompared to plants with a constant potassium supply. This wasshown by the chlorophyll content and PEP carboxylase activity.In contrast to C3 cereals, the C4 cereals did not react withhigher chlorophyll contents to the same extent after the renewalof the postassium supply. The PEP carboxylase activity, however,was immediately raised higher than in control leaves. Chlorophylland PEP carboxylase activity increased simultaneously only inless aged leaves.  相似文献   

13.
Seedlings of three genotypes of barley, Hordeum vulgare L.,cv. Winer, were grown in nutrient solutions for 12 d: (a) Wt,the wild type; (b) Chlo19 and (c) Chlo29, two nitrate reductase(NR) deficient nar-mutants. Nar-mutant plants grown in nitratedeveloped about 5–24% of NADH-NR (EC 1.6.6.1 [EC] .) activitylevel characteristic of the Wt. The NR in vitro assays in whichNADH or NADPH were used as electron donors showed that the twomutant lines contained a mixture of NADH-specific and NAD(P)H-bispecific(EC 1.6.6.2 [EC] .) NRs. Chlo19 had a very low level of MoCo activityas compared to Chlo29 and Wt. Chlo19 appeared to be mutatedin a MoCo gene rather than in the genes coding for the nitrateNR apoenzyme. NAD(P)H-NR was found in the shoots and roots of both mutantsbut only in the roots of Wt. Several aspects of the regulationof NADH and NAD(P)H specific NRs in plants of the barley cv.Winer genotypes are discussed. MoCo was a strong limiting factorfor NR biosynthesis in nitrate-fed plants of Chlo19, but lesslimited in N-starved and ammonium-fed plants. Biomass productionby the three genotypes was similar during first 12 d after germination,regardless of the level of NR detected in vitro. Mutant plantsmay be able to supply the nitrogen required for growth withonly 5–24% of the NR level of the WT. Key words: Hordeum vulgare, mutants, nitrate, nitrate reductase, molybdenum cofactor  相似文献   

14.
Barley plants (Hordewn vulgare L. cv. Atem) were grown fromseed for 28 d in flowing solution culture, during which timeroot temperature was lowered decrementally to 5?C. Plants werethen subjected to root temperatures of 3, 5, 7, 9, 11, 13, 17or 25 ?C, with common air temperature of 25/15 ?C (day/night).Changes in growth, plant total N, and NO3 levels, andnet uptake of NH4+ and NO3 from a maintained concentrationof 10 mmol m–3 NH4NO3 were measured over 14 d. Dry matterproduction increased 6-fold with increasing root temperaturebetween 3–25 ?C. The growth response was biphasic followingan increase in root temperature. Phase I, lasting about 5 d,was characterized by high root specific growth rates relativeto those of the shoot, particularly on a fresh weight basis.During Phase I the shoot dry weight specific growth rates wereinversely related to root temperature between 3–13 ?C.Phase 2, from 5–14 d, was characterized by the approachtowards, and/or attainment of, balanced exponential growth betweenshoots and roots. Concentrations of total N in plant dry matterincreased with root temperature between 3–25 ?C, moreso in the shoots than roots and most acutely in the youngestfully expanded leaf (2?l–6?9% N). When N contents wereexpressed on a tissue fresh weight basis the variation withtemperature lessened and the highest concentration in the shootwas at 11 ?C. Uptake of N increased with root temperature, andat all temperatures uptake of NH4+, exceeded that of NO3,irrespective of time. The proportions of total N uptake over14 d absorbed in the form of NH4+ were (%): 86, 91, 75, 77,76, 73, 77, and 80, respectively, at 3, 5, 7, 9, Il, 13, 17,and 25 ?C. At all temperatures the preference for NH4+ overNO3 uptake increased with time. An inverse relationshipbetween root temperature (3–11 ?C) and the uptake of NH4+as a proportion of total N uptake was apparent during PhaseI. The possible mechanisms by which root temperature limitsgrowth and influences N uptake are discussed. Key words: Hordeum vulgare, root temperature, ammonium, nitrate, ion uptake, growth rate  相似文献   

15.
Eight cvs of barley (Hordeum vulgare L.) were separately plantedwith Wild Oats (Avena fatua L., genetically pure line CS40)in a sand culture with two external K+ concentrations. Substantialdifferences were observed among barley cvs in their abilityto compete with wild oat. The variety Fergus was highly competitiveat both high and low [K+]e, whereas Steptoe was competitiveonly at high [K+]e, and Compana was only weakly competitivewith wild oat. The differences between barley cvs were relatedto their previously reported efficiencies of K+ uptake and utilization. Hordeum vulgare L., Avena fatua L., barley, wild oat, competition, K+ nutrition, utilization efficiency  相似文献   

16.
The effect of root temperature and form of inorganic nitrogensupply on in vitro nitrate reductase activity (NRA) was studiedin oilseed rape (Brassica napus L. cv. bien venu). Plants weregrown initially in flowing nutrient solution containing 10 µMNH4NO3 and then supplied with either nitrate or ammonium for15 d at root temperatures of 3, 7, 11 or 17 °C. Shoot temperatureregime was similar for all plants; 20/15 °C, day/night.Root NRA was highest when roots were grown at 3 and 7 °C.In laminae and petioles NRA was highest when roots were 11 or17 °C. The plants supplied with ammonium had much lowerlevels of NRA in roots after 5 d than the plants supplied onlywith nitrate. NRA in the laminae of plants supplied with ammoniumwas low relative to that in plants supplied with nitrate onlywhen root temperature was 11 or 17 °C. Values of the apparent activation energy (Ea) of NR, calculatedfrom the Arrhenius equation, in laminae and petioles were differentfrom roots suggesting difference in enzyme conformation. Evidencethat the temperature at which roots were growing affected Eawas equivocal. Oilseed rape, Brassica napus L., activation energy, ammonium, Arrhenius equation, nitrate, root temperature, nitrate reductase  相似文献   

17.
BENNETT  D. M. 《Annals of botany》1982,50(2):239-245
Electron-probe microanalysis was used to investigate the locationof silicon at the proximal end of the seminal and adventitiousroots, of almost mature field-grown specimens of Hordeum sativumJess., Avena sativa L. and Triticum aestivum L. In the seminal roots silicon was confined to the endodermis,where it was present in the thickened inner tangential and radialwalls. The outer tangential walls also contained silicon inall of the cells in wheat and in occasional cells in barleyand oats. The adventitious roots of the three cereals displayed differencesin silicon deposition. In barley, silicon was present in allthe walls of the endodermal cells, whereas in oats it was onlylocated in the inner tangential and radial walls. Wheat showedcultivar differences, no silicon was detected in Capelle Desprez,but it was present in the thickened endodermis of Little Jossand Hustler. In all the samples studied silicon was absent fromthe sub-epidermal sclerenchyma layer. The results are discussed in relation to the possible functionsof the endodermis and the signficance of silicification. Hordeum sativum Jess, barley, Avena sativa L, oat, Triticum aestivum L, wheat, silicon deposition, electron-probe microanalysis  相似文献   

18.
Accumulation of the gaseous plant hormone ethylene is very importantfor the induction of several responses of plants to flooding.However, little is known about the role of this gas in the formationof flooding-induced adventitious roots. Formation of adventitiousroots in Rumex species is an adaptation of these plants to floodedsoil conditions. The large air-spaces in these roots enablesdiffusion of gases between shoot and roots. Application of ethylene to non-flooded Rumex plants resultedin the formation of adventitious roots. In R. palustris Sm.shoot elongation and epinasty were also observed. The numberof roots in R. thyrsiflorus Fingerh. was much lower than inR. palustris, which corresponds with the inherent differencein root forming capacity between these two species. Ethyleneconcentrations of 1.5–2µI I– 1 induced a maximumnumber of roots in both species. Quantification of ethylene escaping from root systems of Rumexplants that were de-submerged after a 24 h submergence periodshowed that average ethylene concentrations in submerged rootsreached 1.8 and 9.1 µl I–1 in R. palustris and R.thyrsiflorus, respectively. Inhibition of ethylene productionin R. palustris by L--(2-aminoethoxyvinyl)-glycine (AVG) or-aminobutyric acid (AIB) decreased the number of adventitiousroots induced by flooding, indicating that high ethylene concentrationsmay be a prerequisite for the flooding-induced formation ofadventitious roots in Rumex species. Key words: Adventitious roots, epinasty, ethylene, flooding, Rumex, shoot elongation  相似文献   

19.
High temperatures (up to 35 °C) were applied to plants ofmalting barley,Hordeum vulgareL. (‘Schooner’) fora period of 5 d during grain-filling. Heat treatment had a profoundeffect on the structure of the mature barley grain. There wasevidence of degradation of endosperm storage products in heat-treatedgrain. Starch granule development was reduced in sub-aleuronecells following heat treatment and alterations to starch granuledistribution and growth were observed in the endosperms of thesegrains. Endosperm cell wall and crushed cell layer (CCL) developmentwere sensitive to high temperatures, with the reduced thicknessof the CCL and generally patchy Calcofluor fluorescence of endospermcell walls indicative of partial hydrolysis of ß-glucans.Increased growth of the embryo took place in heat-treated grainscompared with control grains. Endosperm texture was generallymore friable in heat-treated grains than in control grains,and these grains overmodified during malting, with considerabledegradation of starch in the form of extensive pitting of A-typestarch granules. Evidence is presented for developmental andgermination events occurring simultaneously within the developinggrain.Copyright 1998 Annals of Botany Company Barley,Hordeum vulgareL., starch granules, crushed cell layer, scutellum, embryo, fluorescence microscopy, scanning electron microscopy, confocal microscopy, malting quality.  相似文献   

20.
We have examined the hypothesis that cytokinins transportedfrom roots to shoots affects leaf growth, stomatal conductance,and cytokinin concentration of leaves of Phaseolus and a hybridpoplar (Populus trichocarpa x Populus deltoides) with hypoxicroots. Because cytokinins may interact with other substances,potassium and calcium concentrations were determined in xylemsap of Populus plants with hypoxic and aerated roots while gibberellin(GA) concentrations were measured in shoot tissues. Root hypoxiadecreased leaf growth and closed stomata in both species. Inboth species, fluxes of cytokinins out of the roots were reduced,but no differences in bulk leaf concentrations were measuredbetween the hypoxic and aerated plants. Shoots with aeratedroots contained slightly higher concentrations of GA1 and GA3than shoots from hypoxic plants. There were no differences incalcium or potassium concentrations in xylem sap between aerationtreatments. Exogenously applied cytokinins did not alleviatethe growth or stomatal responses caused by root hypoxia. Informationon the site(s) and mechanism(s) of cytokinin action and theways in which cytokinins are compartmentalized within plantcells will be required to understand the physiological significanceof cytokinin transport in the transpirational stream. Key words: Cytokinins, hypoxia, Populus, Phaseolus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号