首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aspartame (L-aspartyl L-phenylalanine methyl ester) isan artificial sweetener as shown in Fig.1 (A) [1]. Studieson its structure and function showed that its N-terminalL-aspartyl residue could only be replaced by aminomalonyl[2] or L-asparaginyl [3] residue. When its peptide bondwas replaced by an ester bond [Fig. 1(B)] or the hydrogenof amide in the peptide bond replaced by a methyl group[Fig. 1(C)], its sweetness was lost [4]. According to thecrystal structure of aspartame, between the …  相似文献   

2.
Structural insights into the mechanism of intramolecular proteolysis.   总被引:5,自引:0,他引:5  
Q Xu  D Buckley  C Guan  H C Guo 《Cell》1999,98(5):651-661
A variety of proteins, including glycosylasparaginase, have recently been found to activate functions by self-catalyzed peptide bond rearrangements from single-chain precursors. Here we present the 1.9 A crystal structures of glycosylasparaginase precursors that are able to autoproteolyze via an N --> O acyl shift. Several conserved residues are aligned around the scissile peptide bond that is in a highly strained trans peptide bond configuration. The structure illustrates how a nucleophilic side chain may attack the scissile peptide bond at the immediate upstream backbone carbonyl and provides an understanding of the structural basis for peptide bond cleavage via an N --> O or N --> S acyl shift that is used by various groups of intramolecular autoprocessing proteins.  相似文献   

3.
The influence of the nature of the bond between a peptide and a (lipidic) carrier molecule on the immunogenicity of that construct was investigated. As types of bonds a thioester-, a disulfide-, an amide- and a thioether bond were investigated. As carrier molecules a peptide, an N-palmitoylated peptide or a C(16)-hydrocarbon chain were used. The biostability of the bond between peptide and carrier molecule is thioether > amide > disulfide > thioester. However, the immunogenic potency of the constructs used was found to be thioester > disulfide > amide > thioether. In conclusion, a construct with a bond between peptide and (lipidic) carrier molecule that is more susceptible to biological degradation is more immunogenic when used in a peptide-based vaccine than a bond that is less susceptible to biological degradation.  相似文献   

4.
5.
The long-time stability of conjugates prepared from epoxy derivatives of hydroxyalkyl methacrylate gels and peptides or proteins has been investigated at various pH values. These conjugates were found to be extremely stable. The observed slow release of nitrogen is due mainly to a splitting of the peptide bond adjacent to the covalent bond anchoring the peptide to the matrix. This peptide bond is partially labilized by microenvironmental influences of the matrix. Since in all experiments only a fraction of the immobilized ligand became detached, it is suggested that there is a subpopulation of fixed ligands which are susceptible to a matrix-induced bond splitting.  相似文献   

6.
报道了以二聚体存在的dimo-BmK M1的1.4A分辨率晶体结构.蛋白质中的肽键是局部双键,不可旋转,因此具有顺式(cis)和反式(trans)两种构型,它们不能通过旋转操作相互转换.非脯氨酸顺式肽键是指形成该肽键的氨基是由脯氨酸以外的氨基酸提供的(Xaa-nonPro),这类肽键的顺式构型的自由能远比反式高,因此极少出现在天然蛋白质结构中.事实上,在长时间中,多肽链的“反式肽键连接”被视为蛋白质结构的一条基本规则,把顺式肽键视为不可能.随着高分辨率精确蛋白质结构数量的增加,近年来有详细的统计分析揭示,非脯氨酸顺式肽键(Xaa-nPro)在蛋白质结构中出现的几率为0.03%~0.05%,而且大多存在于功能敏感的结构区域,可能具有重要意义.但由于所用的基本结构数据都来自晶体结构,对这种反常肽键是否由结晶环境影响而形成,存在疑问.此前曾在以单体形式存在的蝎神经毒素mono-BmK M1的高分辨率结构中发现其中肽键Pr09-His10是非脯氨酸顺式肽键,并详细分析了其结构.功能意义.以二聚体存在的dimo-BmK M1的1.4A分辨率晶体结构表明,它与mono.BmK M1有不同的空间群、不同的分子堆积方式,不同的晶体环境.结构模型被高度精化,Rcryst达到0.109.dimo-BmK M1结构显示,在不对称单位中的两个M1分子在同一位置(残基9.10之间)都清晰地存在顺式肽键.立体化学分析显示,这一肽键的几何参数和局部结构与mono.BmK M1中的(9.10)顺式肽键基本相同.这一结果表明,非脯氨酸顺式肽键9.10的存在与结晶环境无关,是BmK M1分子的固有结构特征.在此基础上,综合分析了与顺式、反式肽键相关的结构元素,发现与残基(8.19)序列模体-KPXNC-(X为任意氨基酸)所决定的特征回折结构可能是分子内在的主要结构因素,其中第8位残基是Lys或Asp对决定肽键是顺式还是反式有关键作用.近来的突变实验及其晶体结构测定已证实,Lys8/Asp8是(9-10)肽键顺式/反式异构的结构开关,它们对该类分子与不同种属钠通道作用的专一选择性具有重要作用.通过BLAST搜索,发现在其他18个蛋白质中也存在相同的序列模体.KPXNC-,推测在这些蛋白质的相应肽键位置也可能存在反常的脯氨酸顺式肽键。  相似文献   

7.
Energetics of peptide bond formation at elevated temperatures   总被引:1,自引:0,他引:1  
Summary The free energies of formation of the peptide bond between carbobenzoxy-glycine and L-phenylalanine amide in aqueous solution at temperatures up to 60°C were calculated from experimentally determined equilibrium constants. The reaction was catalyzed by a thermophylic enzyme. The thermodynamic energy barrier to peptide bond formation was found to decrease with increasing temperature: the standard free energy of peptide bond formation did appear to become negative in the region of 60°C. The possible significance of these results for peptide bond formation under prebiotic conditions is discussed.  相似文献   

8.
Stress and strain in staphylococcal nuclease.   总被引:5,自引:5,他引:0       下载免费PDF全文
Protein molecules generally adopt a tertiary structure in which all backbone and side chain conformations are arranged in local energy minima; however, in several well-refined protein structures examples of locally strained geometries, such as cis peptide bonds, have been observed. Staphylococcal nuclease A contains a single cis peptide bond between residues Lys 116 and Pro 117 within a type VIa beta-turn. Alternative native folded forms of nuclease A have been detected by NMR spectroscopy and attributed to a mixture of cis and trans isomers at the Lys 116-Pro 117 peptide bond. Analyses of nuclease variants K116G and K116A by NMR spectroscopy and X-ray crystallography are reported herein. The structure of K116A is indistinguishable from that of nuclease A, including a cis 116-117 peptide bond (92% populated in solution). The overall fold of K116G is also indistinguishable from nuclease A except in the region of the substitution (residues 112-117), which contains a predominantly trans Gly 116-Pro 117 peptide bond (80% populated in solution). Both Lys and Ala would be prohibited from adopting the backbone conformation of Gly 116 due to steric clashes between the beta-carbon and the surrounding residues. One explanation for these results is that the position of the ends of the residue 112-117 loop only allow trans conformations where the local backbone interactions associated with the phi and psi torsion angles are strained. When the 116-117 peptide bond is cis, less strained backbone conformations are available. Thus the relaxation of the backbone strain intrinsic to the trans conformation compensates for the energetically unfavorable cis X-Pro peptide bond. With the removal of the side chain from residue 116 (K116G), the backbone strain of the trans conformation is reduced to the point that the conformation associated with the cis peptide bond is no longer favorable.  相似文献   

9.
An N-hydroxylated peptide bond was found to be cleaved faster by an endopeptidase than the corresponding peptide bond. This preferred enzymatic cleavage was detected during proteolytic studies of the N-hydroxy peptide SIINFpsi[CO-N(OH)]GKL in the presence of the serine protease alpha-chymotrypsin in comparison with the natural SIINFEKL epitope and related analogs. For the first time, the replacement of the peptide bond by another motif afforded an oligomer which is degraded faster than the natural peptide. The N-hydroxy peptide is also more sensitive to the enzymatic degradation than the Gly-containing analog SIINFGKL. A tentative explanation for the unexpected higher cleavage rate of the CO-N(OH) bond is given on the basis of the N-OH intramolecular H-bonding capacity as indicated by NMR experiments. This property of the hydroxamate group may be of particular advantage for the introduction of a specific cleavage site within peptidomimetics or in prodrugs.  相似文献   

10.
The synthesis and pharmacological activity of novel nociceptin/orphanin FQ (N/OFQ) analogues modified in the Phe(1)-Gly(2) peptide bond are reported. The aim of the present work was to elucidate the importance of this peptide bond for the N/OFQ receptor (NOP) interaction. Our study indicates that the first peptide bond in N/OFQ is important but not crucial for interaction with the N/OFQ receptor; for instance, substitution with a methyleneoxy bond generates an agonist derivative just 3-fold less potent than the reference compound.  相似文献   

11.
The hydrolysis/synthesis equilibrium of the peptide bond is governed by the relative magnitudes of the corresponding Gibbs' energies of hydrolysis to non-ionized products and of their ionization. The positive energy change in peptide hydrolysis to non-ionized products is the thermodynamic basis for the acyl and leaving group specificity of proteinases. With a proteinase of suitable specificity, some peptide bonds can be synthesized by a thermodynamically controlled enzyme aminolysis of specific acylamino or peptide acids; any peptide bond can be formed by a kinetically controlled enzyme aminolysis of the corresponding acylamino or peptide esters.  相似文献   

12.
The folding kinetics of human common-type acylphosphatase (cAcP) from its urea- and TFE-denatured states have been determined by stopped-flow fluorescence techniques. The refolding reaction from the highly unfolded state formed in urea is characterized by double exponential behavior that includes a slow phase associated with isomerism of the Gly53-Pro54 peptide bond. However, this slow phase is absent when refolding is initiated by dilution of the highly a-helical denatured state formed in the presence of 40% trifluoroethanol (TFE). NMR studies of a peptide fragment corresponding to residues Gly53-Gly69 of cAcP indicate that only the native-like trans isomer of the Gly-Pro peptide bond is significantly populated in the presence of TFE, whereas both the cis and trans isomers are found in an approximately 1:9 ratio for the peptide bond in aqueous solution. Molecular modeling studies in conjunction with NMR experiments suggest that the trans isomer of the Gly53-Pro54 peptide bond is stabilized in TFE by the formation of a nonnative-like hydrogen bond between the CO group of Gly53 and the NH group of Lys57. These results therefore reveal that a specific nonnative interaction in the denatured state can increase significantly the overall efficiency of refolding.  相似文献   

13.
Wang ML  Song JN  Xu WB  Li WJ 《FEBS letters》2004,576(3):336-338
Proline is a special imino acid in protein and the isomerization of the prolyl peptide bond has notable biological significance and influences the final structure of protein greatly, so the correlation between proline synonymous codon usage and local amino acid, the correlation between proline synonymous codon usage and the isomerization of the prolyl peptide bond were both investigated in the Escherichia coli genome by using a novel method based on information theory. The results show that in peptide chain, the residue at the first position C-terminal influences the usage of proline synonymous codon greatly and proline synonymous codons contain some factors influencing the isomerization of the prolyl peptide bond.  相似文献   

14.
Conformational analyses on four cyclic model peptides of the beta-bend, cyclo(L- or D-Phe-L-Pro-epsilon-aminocaproyl(Aca] and cyclo(L-Pro-L- or D-Phe-Aca), were carried out both experimentally and theoretically. Cyclo(D-Phe-L-Pro-Aca) was shown to exist as a single conformer taking the type II' beta-bend. The comparison of its CD spectra with those of cyclo(L-Ala-L-Ala-Aca) revealed that type I and II' beta-bends, both with alpha-helix-like CD spectra, can be distinguished. Cyclo(L-Phe-L-Pro-Aca) was shown to exist as a single conformer with a cis L-Phe-L-Pro peptide bond, taking the type VI beta-bend. Its CD spectrum has thus been observed for the first time for the bend containing a cis peptide bond. Cyclo(L-Pro-L-Phe-Aca) was shown to exist as a mixture of two conformers, the major one taking the type I beta-bend with a trans Aca-L-Pro peptide bond and the minor one with a cis Aca-L-Pro peptide bond. Cyclo(L-Pro-D-Phe-Aca) was suggested to exist as a mixture of two conformers, the major one taking the type II beta-bend with a trans Aca-L-Pro peptide bond and the minor one with a cis Aca-L-Pro peptide bond.  相似文献   

15.
We have found that besides the known cyclolinopeptides A (CLA) and B (CLB), there is a new cyclic peptide in linseed mill cake that we have named CLX. Its composition is very similar to that of CLA, a cyclic peptide with a distinct immunosuppressive activity. The sequence of this peptide has been established as cyclo(PPFFILLX), where X is a non-proteinaceous amino acid, N-methyl-4-aminoproline. This amino acid substitutes for two amino acid residues of CLA, mimicking a dipeptide moiety with a nonplanar cis amide bond. The non-proteinaceous amino acid X may mimic a transition state of the peptide bond which exists in such processes as, e.g., PPIase-catalysed cis/trans amide-Pro bond isomerisation.  相似文献   

16.
Previously, we have shown that thiopalmitoylation of peptides of myelin proteolipid protein, as occurs naturally in vivo, increases their ability to induce experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis, and skews the autoimmune response toward a CD4(+)-mediated response. In contrast, the same peptide, when synthesized with a stable amide bond between peptide and lipid, inhibits experimental autoimmune encephalomyelitis and skews the response toward a CD8(+) response. The aim of the current study was to determine the mechanisms responsible for these observations. We show that proteolipid protein lipopeptides, when synthesized with a thioester bond between the lipid and the peptide, are taken up into APCs via an actin-independent endocytic route, the thioester bond is cleaved in the endosome, and the peptide is subsequently displayed on the surface of the APC in the context of MHC class II. The same peptide, when synthesized with the lipid attached via a stable amide bond, rapidly enters into the cytoplasm of the APC and forms micelles; however, the bond between peptide and lipid is not cleaved, and the micelles travel via the endoplasmic reticulum to complex with MHC class I. These findings have implications for vaccine development and for the development of MHC class II-restricted autoimmune diseases, as many human autoantigens thus far identified are thioacylated.  相似文献   

17.
Youngman EM  Brunelle JL  Kochaniak AB  Green R 《Cell》2004,117(5):589-599
Peptide bond formation and peptide release are catalyzed in the active site of the large subunit of the ribosome where universally conserved nucleotides surround the CCA ends of the peptidyl- and aminoacyl-tRNA substrates. Here, we describe the use of an affinity-tagging system for the purification of mutant ribosomes and analysis of four universally conserved nucleotides in the innermost layer of the active site: A2451, U2506, U2585, and A2602. While pre-steady-state kinetic analysis of the peptidyl transferase activity of the mutant ribosomes reveals substantially reduced rates of peptide bond formation using the minimal substrate puromycin, their rates of peptide bond formation are unaffected when the substrates are intact aminoacyl-tRNAs. These mutant ribosomes do, however, display substantial defects in peptide release. These results reveal a view of the catalytic center in which an inner shell of conserved nucleotides is pivotal for peptide release, while an outer shell is responsible for promoting peptide bond formation.  相似文献   

18.
Antistasin (ATS) is a 119-amino acid, leech-derived protein which exhibits selective, tight-binding inhibition of blood coagulation factor Xa. Prolonged incubation of ATS with factor Xa leads to the highly specific hydrolysis of the peptide bond between residues Arg34 and Val35, implicating this peptide bond as the putative reactive site. We report here the preparation of pure, cleaved (modified) recombinant ATS (rATS) and utilize this material to provide additional proof that the cleaved peptide bond is in fact the reactive site. Modified rATS retains strong inhibitory potency against factor Xa as evidenced by a dissociation constant of 166.3 +/- 9.6 pM; four-fold greater than that of native inhibitor, 43.4 +/- 1.4 pM. Incubation of pure, modified rATS with catalytic amounts of factor Xa results in resynthesis of the hydrolyzed peptide bond, achieving an equilibrium near unity between native and modified inhibitors. Specific removal of the newly formed carboxy-terminal Arg residue from modified rATS by carboxypeptidase B treatment obviates its conversion to native inhibitor coincident with the complete loss of inhibitory activity. These results establish that rATS inhibits factor Xa according to a standard mechanism of serine protease inhibitors and support the contention that the Arg34-Val35 peptide bond constitutes the reactive site.  相似文献   

19.
N-methyl- alpha -benzyl-o-aminomethylphenylacetic acid was incorporated into a cyclic somatostatin analogue in order to mimic a cis-peptide bond configuration. The high biological potency of one of the isomers of the cyclic peptide strongly argues in favour of the proposed cis-configuration of the peptide bond at that position in the parent peptide. This represents the first cis-peptide bond mimic which has high biological activity.  相似文献   

20.
Flavodoxins (Flds) are small proteins that shuttle electrons in a range of reactions in microorganisms. Flds contain a redox‐active cofactor, a flavin mononucleotide (FMN), and it is well established that when Flds are reduced by one electron, a peptide bond close to the FMN isoalloxazine ring flips to form a new hydrogen bond with the FMN N5H, stabilizing the one‐electron reduced state. Here, we present high‐resolution crystal structures of Flavodoxin 1 from Bacillus cereus in both the oxidized (ox) and one‐electron reduced (semiquinone, sq) state. We observe a mixture of conformers in the oxidized state; a 50:50 distribution between the established oxidized conformation where the peptide bond is pointing away from the flavin, and a conformation where the peptide bond is pointing toward the flavin, approximating the conformation in the semiquinone state. We use single‐crystal spectroscopy to demonstrate that the mixture of conformers is not caused by radiation damage to the crystal. This is the first time that such a mixture of conformers is reported in a wild‐type Fld. We therefore carried out a survey of published Fld structures, which show that several proteins have a pronounced conformational flexibility of this peptide bond. The degree of flexibility seems to be modulated by the presence, or absence, of stabilizing interactions between the peptide bond carbonyl and its surrounding amino acids. We hypothesize that the degree of conformational flexibility will affect the Fld ox/sq redox potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号