首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Prostate cancer is known as the fifth most common cancer in Korean male. The etiology of the prostate cancer remains unknown, but age, race, drug, family history, dietary habit and steroid hormone levels have been suggested as causative factors. Among these factors, variations in androgen hormone levels have been suggested as one of risk factors for the cancer. The glucuronidation is a major pathway of detoxification process of toxin and hormones within human body by UDP-glucuronosyltransferase (UGT) enzymes. Known as the androgen inactivating UGT2B enzyme family, UGT2B17 and UGT2B28 have common deletion region by copy number variation (CNV) and UGT2B15 has a single nucleotide polymorphism (SNP) (rs1902023: G > T) locus which contains the change from Asp to Tyr on exon 1. These polymorphisms were analyzed with genomic DNA extracted from 555 prostate cancer cases and 404 control males. There was no difference in the frequency of CNV and SNP of each UGT2B genes between prostate cancer cases and control males. In this study, we found the decreased risk (OR, 0.39; 95 % CI, 0.19–0.83; P = 0.011) of prostate cancer in individuals with UGT2B17 del/del type, UGT2B28 in/del type and UGT2B15 SNP TT type. Additionally, we found the length polymorphisms of the short tandem repeat (STR) in the allelic loci of UGT2B28 deletion regions and suggest that this locus can be used for a personal identification marker.  相似文献   

3.
Flavonol glycosides constitute one of the most prominent plant natural product classes that accumulate in the model plant Arabidopsis thaliana. To date there are no reports of functionally characterized flavonoid glycosyltransferases in Arabidopsis, despite intensive research efforts aimed at both flavonoids and Arabidopsis. In this study, flavonol glycosyltransferases were considered in a functional genomics approach aimed at revealing genes involved in determining the flavonol-glycoside profile. Candidate glycosyltransferase-encoding genes were selected based on homology to other known flavonoid glycosyltransferases and two T-DNA knockout lines lacking flavonol-3-O-rhamnoside-7-O-rhamnosides (ugt78D1) and quercetin-3-O-rhamnoside-7-O-glucoside (ugt73C6 and ugt78D1) were identified. To confirm the in planta results, cDNAs encoding both UGT78D1 and UGT73C6 were expressed in vitro and analyzed for their qualitative substrate specificity. UGT78D1 catalyzed the transfer of rhamnose from UDP-rhamnose to the 3-OH position of quercetin and kaempferol, whereas UGT73C6 catalyzed the transfer of glucose from UDP-glucose to the 7-OH position of kaempferol-3-O-rhamnoside and quercetin-3-O-rhamnoside, respectively. The present results suggest that UGT78D1 and UGT73C6 should be classified as UDP-rhamnose:flavonol-3-Orhamnosyltransferase and UDP-glucose:flavonol-3-O-glycoside-7-O-glucosyltransferase, respectively.  相似文献   

4.
In theArabidopsis genome, approximately 120 UDP-glycosyltransferases (UGTs) have been annotated. They generally catalyze the transfer of sugars to various acceptor molecules, including flavonoids. To better understand their physiological roles, we analyzed a tandemly located putative flavonoid UGT cluster comprisingUGT73B1, UGT73B2, andUGT73B3 on Chromosome IV. We then isolated four loss-of-function mutations —ugt73b1- 1, ugt73b2- 1, ugt73b3- 1, andugt73b3- 2. In our expression analysis, the closely related UCTs exhibited tissue-specific patterns of expression that were severely altered in their respective mutant plants. For example,UGT73B2 was up-regulated inugt73b1- 1, whereasUGT73B7 was highly expressed inugt73b2- 1, ugt73b3- t, andugt73b3- 2. Interestingly, each recessive mutant was resistant to methyl viologen (paraquat), an herbicide thought to cause oxidative stress. Our results suggest thatUGTs play an important role in the glycosylation pathways when responding to oxidative stress.  相似文献   

5.
Manihot esculenta (cassava) contains two cyanogenic glucosides, linamarin and lotaustralin, biosynthesized from l ‐valine and l ‐isoleucine, respectively. In this study, cDNAs encoding two uridine diphosphate glycosyltransferase (UGT) paralogs, assigned the names UGT85K4 and UGT85K5, have been isolated from cassava. The paralogs display 96% amino acid identity, and belong to a family containing cyanogenic glucoside‐specific UGTs from Sorghum bicolor and Prunus dulcis. Recombinant UGT85K4 and UGT85K5 produced in Escherichia coli were able to glucosylate acetone cyanohydrin and 2‐hydroxy‐2‐methylbutyronitrile, forming linamarin and lotaustralin. UGT85K4 and UGT85K5 show broad in vitro substrate specificity, as documented by their ability to glucosylate other hydroxynitriles, some flavonoids and simple alcohols. Immunolocalization studies indicated that UGT85K4 and UGT85K5 co‐occur with CYP79D1/D2 and CYP71E7 paralogs, which catalyze earlier steps in cyanogenic glucoside synthesis in cassava. These enzymes are all found in mesophyll and xylem parenchyma cells in the first unfolded cassava leaf. In situ PCR showed that UGT85K4 and UGT85K5 are co‐expressed with CYP79D1 and both CYP71E7 paralogs in the cortex, xylem and phloem parenchyma, and in specific cells in the endodermis of the petiole of the first unfolded leaf. Based on the data obtained, UGT85K4 and UGT85K5 are concluded to be the UGTs catalyzing in planta synthesis of cyanogenic glucosides. The localization of the biosynthetic enzymes suggests that cyanogenic glucosides may play a role in both defense reactions and in fine‐tuning nitrogen assimilation in cassava.  相似文献   

6.
The plant family 1 UDP‐glycosyltransferases (UGTs) are the biggest GT family in plants, which are responsible for transferring sugar moieties onto a variety of small molecules, and control many metabolic processes; however, their physiological significance in planta is largely unknown. Here, we revealed that two Arabidopsis glycosyltransferase genes, UGT79B2 and UGT79B3, could be strongly induced by various abiotic stresses, including cold, salt and drought stresses. Overexpression of UGT79B2/B3 significantly enhanced plant tolerance to low temperatures as well as drought and salt stresses, whereas the ugt79b2/b3 double mutants generated by RNAi (RNA interference) and CRISPR‐Cas9 strategies were more susceptible to adverse conditions. Interestingly, the expression of UGT79B2 and UGT79B3 is directly controlled by CBF1 (CRT/DRE‐binding factor 1, also named DREB1B) in response to low temperatures. Furthermore, we identified the enzyme activities of UGT79B2/B3 in adding UDP‐rhamnose to cyanidin and cyanidin 3‐O‐glucoside. Ectopic expression of UGT79B2/B3 significantly increased the anthocyanin accumulation, and enhanced the antioxidant activity in coping with abiotic stresses, whereas the ugt79b2/b3 double mutants showed reduced anthocyanin levels. When overexpressing UGT79B2/B3 in tt18 (transparent testa 18), a mutant that cannot synthesize anthocyanins, both genes fail to improve plant adaptation to stress. Taken together, we demonstrate that UGT79B2 and UGT79B3, identified as anthocyanin rhamnosyltransferases, are regulated by CBF1 and confer abiotic stress tolerance via modulating anthocyanin accumulation.  相似文献   

7.
Osteoporosis, a highly heritable disease, is characterized mainly by low bone-mineral density (BMD), poor bone geometry, and/or osteoporotic fractures (OF). Copy-number variation (CNV) has been shown to be associated with complex human diseases. The contribution of CNV to osteoporosis has not been determined yet. We conducted case-control genome-wide CNV analyses, using the Affymetrix 500K Array Set, in 700 elderly Chinese individuals comprising 350 cases with homogeneous hip OF and 350 matched controls. We constructed a genomic map containing 727 CNV regions in Chinese individuals. We found that CNV 4q13.2 was strongly associated with OF (p = 2.0 × 10−4, Bonferroni-corrected p = 0.02, odds ratio = 1.73). Validation experiments using PCR and electrophoresis, as well as real-time PCR, further identified a deletion variant of UGT2B17 in CNV 4q13.2. Importantly, the association between CNV of UGT2B17 and OF was successfully replicated in an independent Chinese sample containing 399 cases with hip OF and 400 controls. We further examined this CNV's relevance to major risk factors for OF (i.e., hip BMD and femoral-neck bone geometry) in both Chinese (689 subjects) and white (1000 subjects) samples and found consistently significant results (p = 5.0 × 10−4 −0.021). Because UGT2B17 encodes an enzyme catabolizing steroid hormones, we measured the concentrations of serum testosterone and estradiol for 236 young Chinese males and assessed their UGT2B17 copy number. Subjects without UGT2B17 had significantly higher concentrations of testosterone and estradiol. Our findings suggest the important contribution of CNV of UGT2B17 to the pathogenesis of osteoporosis.  相似文献   

8.
Glucuronidation is a major pathway of androgen metabolism and is catalyzed by UDP-glucuronosyltransferase (UGT) enzymes. UGT2B15 and UGT2B17 are 95% identical in primary structure, and are expressed in steroid target tissues where they conjugate C19 steroids. Despite the similarities, their regulation of expression are different; however, the promoter region and genomic structure of only the UGT2B17 gene have been characterizedX to date. To isolate the UGT2B15 gene and other novel steroid-conjugating UGT2B genes, eight P-1-derived artificial chromosomes (PAC) clones varying in length from 30 kb to 165 kb were isolated. The entire UGT2B15 gene was isolated and characterized from the PAC clone 21598 of 165 kb. The UGT2B15 and UGT2B17 genes are highly conserved, are both composed of six exons spanning approximately 25 kb, have identical exon sizes and have identical exon-intron boundaries. The homology between the two genes extend into the 5'-flanking region, and contain several conserved putative cis-acting elements including Pbx-1, C/EBP, AP-1, Oct-1 and NF/kappaB. However, transfection studies revealed differences in basal promoter activity between the two genes, which correspond to regions containing non-conserved potential elements. The high degree of homology in the 5'-flanking region between the two genes is lost upstream of -1662 in UGT2B15, and suggests a site of genetic recombination involved in duplication of UGT2B genes. Fluorescence in situ hybridization mapped the UGT2B15 gene to chromosome 4q13.3-21.1. The other PAC clones isolated contain exons from the UGT2B4, UGT2B11 and UGT2B17 genes. Five novel exons, which are highly homologous to the exon 1 of known UGT2B genes, were also identified; however, these exons contain premature stop codons and represent the first recognized pseudogenes of the UGT2B family. The localization of highly homologous UGT2B genes and pseudogenes as a cluster on chromosome 4q13 reveals the complex nature of this gene locus, and other novel homologous UGT2B genes encoding steroid conjugating enzymes are likely to be found in this region of the genome.  相似文献   

9.
Wang B  Jin SH  Hu HQ  Sun YG  Wang YW  Han P  Hou BK 《The New phytologist》2012,194(3):666-675
? Family 1 glycosyltransferases comprise the greatest number of glycosyltransferases found in plants. The widespread occurrence and diversity of glycosides throughout the plant kingdom underscore the importance of these glycosyltransferases. ? Here, we describe the identification and characterization of a late-flowering Arabidopsis (Arabidopsis thaliana) mutant, in which a putative family 1 glycosyltransferase gene, UGT87A2, was disrupted. The role and possible mechanism of UGT87A2 in the regulation of flowering were analyzed by molecular, genetic and cellular approaches. ? The ugt87a2 mutant exhibited late flowering in both long and short days, and its flowering was promoted by vernalization and gibberellin. Furthermore, the mutant flowering phenotype was rescued by the wild-type UGT87A2 gene in complementation lines. Interestingly, the expression of the flowering repressor FLOWERING LOCUS C was increased substantially in the mutant, but decreased to the wild-type level in complementation lines, with corresponding changes in the expression levels of the floral integrators and floral meristem identity genes. The expression of UGT87A2 was developmentally regulated and its protein products were distributed in both cytoplasm and nucleus. ? Our findings imply that UGT87A2 regulates flowering time via the flowering repressor FLOWERING LOCUS C. These data highlight an important role for the family 1 glycosyltransferases in the regulation of plant flower development.  相似文献   

10.
We have demonstrated the subcellular localization of the human UDP-glucuronosyltransferases (UGTs), UGT2B7 and UGT1A6, in endoplasmic reticulum (ER) and nuclear membrane from human hepatocytes and cell lines, by in situ immunostaining and Western blot. Double immunostaining for UGT2B7 and calnexin, an ER resident protein, showed that UGT2B7 was equally present in ER and nuclear membrane whereas calnexin was present almost exclusively in ER. Immunogold labeling of HK293 cells expressing UGT2B7 established the presence of UGT2B7 in both nuclear membranes. Enzymatic assays with UGT2B7 substrates confirmed the presence of functional UGT2B7 protein in ER, whole nuclei, and both outer and inner nuclear membranes. This study has identified, for the first time, the presence of UGT2B7 and UGT1A6 in the nucleus and of UGT2B7 in the inner and outer nuclear membranes. This localization may play an important functional role within nuclei: protection from toxic compounds and/or control of steady-state concentrations of nuclear receptor ligands.  相似文献   

11.
Two UDP-glucuronosyltransferases (UGT2B9(*)2 and UGT2B33) have been isolated from female rhesus monkey liver. Microsomal preparations of the cell lines expressing the UGTs catalyzed the glucuronidation of the general substrate 7-hydroxy-4-(trifluoromethyl)coumarin in addition to selected estrogens (beta-estradiol and estriol) and opioids (morphine, naloxone, and naltrexone). UGT2B9(*)2 displayed highest efficiency for beta-estradiol-17-glucuronide production and did not catalyze the glucuronidation of naltrexone. UGT2B33 displayed highest efficiency for estriol and did not catalyze the glucuronidation of beta-estradiol. UGT2B9(*)2 was found also to catalyze the glucuronidation of 4-hydroxyestrone, 16-epiestriol, and hyodeoxycholic acid, while UGT2B33 was capable of conjugating 4-hydroxyestrone, androsterone, diclofenac, and hyodeoxycholic acid. Three glucocorticoids (cortisone, cortisol, and corticosterone) were not substrates for glucuronidation by liver or kidney microsomes or any expressed UGTs. Our current data suggest the use of beta-estradiol-3-glucuronidation, beta-estradiol-17-glucuronidation, and estriol-17-glucuronidation to assay UGT1A01, UGT2B9(*)2, and UGT2B33 activity in rhesus liver microsomes, respectively.  相似文献   

12.
The study of glucosinolates and their regulation has provided a powerful framework for the exploration of fundamental questions about the function, evolution, and ecological significance of plant natural products, but uncertainties about their metabolism remain. Previous work has identified one thiohydroximate S‐glucosyltransferase, UGT74B1, with an important role in the core pathway, but also made clear that this enzyme functions redundantly and cannot be the sole UDP‐glucose dependent glucosyltransferase (UGT) in glucosinolate synthesis. Here, we present the results of a nearly comprehensive in vitro activity screen of recombinant Arabidopsis Family 1 UGTs, which implicate other members of the UGT74 clade as candidate glucosinolate biosynthetic enzymes. Systematic genetic analysis of this clade indicates that UGT74C1 plays a special role in the synthesis of aliphatic glucosinolates, a conclusion strongly supported by phylogenetic and gene expression analyses. Finally, the ability of UGT74C1 to complement phenotypes and chemotypes of the ugt74b1‐2 knockout mutant and to express thiohydroximate UGT activity in planta provides conclusive evidence for UGT74C1 being an accessory enzyme in glucosinolate biosynthesis with a potential function during plant adaptation to environmental challenge.  相似文献   

13.
Crocin is an apocarotenoid glycosyl ester accumulating in fruits of Gardenia jasminoides and used as a food coloring and nutraceutical. For the first time, the two glucosyltransferases UGT75L6 and UGT94E5 that sequentially mediate the final glucosylation steps in crocin biosynthesis in G. jasminoides have been identified and functionally characterized. UGT75L6 preferentially glucosylates the carboxyl group of crocetin yielding crocetin glucosyl esters, while UGT94E5 glucosylates the 6' hydroxyl group of the glucose moiety of crocetin glucosyl esters. The expression pattern of neither UGT75L6 nor UGT94E5 correlated with the pattern of crocin accumulation in G. jasminoides.  相似文献   

14.
Members of the human UDP-glucuronosyltransferase 2B family are located in a cluster on chromosome 4q13 and code for enzymes whose gene products are responsible for the normal catabolism of steroid hormones. Two members of this family, UGT2B15 and UGT2B17, share over 95% sequence identity. However, UGT2B17 exhibits broader substrate specificity due to a single amino acid difference. Using gene-specific primers to explore the genomic organization of these two genes, it was determined that UGT2B17 is absent in some human DNA samples. The gene-specific primers demonstrated the presence or absence of a 150 kb genomic interval spanning the entire UGT2B17 gene, revealing that UGT2B17 is present in the human genome as a deletion polymorphism linked to UGT2B15. Furthermore, it is shown that the UGT2B17 deletion polymorphism shows Mendelian segregation and allele frequencies that differ between African Americans and Caucasians.  相似文献   

15.
Uridine 5′-diphospho-glucuronosyltransferase-1A9 (UGT1A9) expressed in the liver, shows good sequence identity with UGT1A10, expressed in the intestine. Both uridine 5′-diphospho-glucuronosyltransferase (UGT) isoforms show comprehensive overlapping substrate selectivity but there are differences in stereoselectivity, regiospecificity and rate of glucuronidation of the substrates. Multiple sequence alignment analyses of UGT1A9 and UGT1A10 showed that 13% of the residues in N-terminal domain (NTD) are non-identical between them. Herein, authors attempted homology modelling of UGT1A9 and UGT1A10 and validation using software tools and reported mutagenic studies. A molecular docking study of the known substrates is performed on UGT1A9 and UGT1A10 homology models. The non-identical N-terminal residues ranging from 111 to 117 in UGT1A9 and UGT1A10 were identified to play a central role in the substrate selectivity. However, substrate binding is performed by Ser111, Gly115 and Leu117 in UGT1A10 and Gly111, Asp115 and Phe117 in UGT1A9. This study reports new residues in NTD, showing interaction with uridine 5′-diphospho-glucuronic acid which binds with C-terminal domain. Further, molecular dynamics simulations were carried out to study the role of non-identical residues in substrate identification. The study demonstrates the folding of the UGT enzyme, particularly, helix-loop-helix transition and movement of Nα3-2 helix, in response to substrate and co-substrate binding.  相似文献   

16.
陈欣  付锐锐  张鸿  李家儒 《生物资源》2018,40(5):443-449
尿苷二磷酸葡萄糖醛酸转移酶(UDP-glucuronosyltransferase,UGT)家族是植物体内最大的糖基转移酶家族。编码合成UGT的基因属于UGT基因家族。UGT催化的糖基化反应广泛地存在于药用植物次生代谢物质的合成过程中。作为代谢通路中的下游修饰,供体分子在UGT的催化下,将糖基连接到受体分子上。这一过程往往会改变终产物的理化及生物学性质,最终影响其实际的利用价值及利用方式。本文综述分析了药用植物UGT家族基因挖掘分析、功能验证和生产应用等方面近年来的研究进展。  相似文献   

17.
The human UDP-glucuronosyltransferase 1 (UGT1) locus spans nearly 200 kb on chromosome 2 and encodes nine UGT1A proteins that play a prominent role in drug and xenobiotic metabolism. Transgenic UGT1 (Tg-UGT1) mice have been created, and it has been demonstrated that tissue-specific and xenobiotic receptor control of the UGT1A genes is influenced through circulating humoral factors. In Tg-UGT1 mice, the UGT1A proteins are differentially expressed in the liver and gastrointestinal tract. Gene expression profiles confirmed that all of the UGT1A genes can be targeted for regulation by the pregnane X receptor activator pregnenolone-16alpha-carbonitrile (PCN) or the Ah receptor ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In addition, the selective induction of glucuronidation activity toward lamotrigine, ethinyl estradiol, chenodeoxycholic acid, and lithocholic acid by either PCN or TCDD in small intestine from Tg-UGT1 mice corresponded to expression of the locus in this tissue. Induction of UGT1A1 by PCN and TCDD is believed to be highly dependent upon glucocorticoids, because submicromolar concentrations of dexamethasone actively promote PCN and TCDD induction of UGT1A1 in Tg-UGT1 primary hepatocytes. The role of hormonal control of the UGT1 locus was further verified in pregnant and nursing Tg-UGT1 mice. In maternal 14-day post-conception Tg-UGT1mice, liver UGT1A1, UGT1A4, and UGT1A6 were induced, with the levels returning to near normal by birth. However, maternal liver UGT1A4 and UGT1A6 were dramatically elevated and maintained after birth, indicating that these proteins may play a critical role in maternal metabolism during lactation. With expression of the UGT1 locus confirmed in a variety of mouse tissues, these results suggested that the Tg-UGT1 mice will be a useful model to examine the regulatory and functional properties of human glucuronidation.  相似文献   

18.
The formation of beta-D-glucopyranosides (glucuronides) by the UDP-glucuronosyltransferases (UGTs) is a significant metabolic pathway that facilitates the elimination of small hydrophobic molecules such as drugs, dietary constituents, steroids, and bile acids. We elucidate here that an anti-oxidative response leads to induction of UGT1A1 through the Nrf2-Keap1 pathway. When human HepG2 cells were treated with the prooxidants tert-butylhydroquinone and beta-naphthoflavone, cellular UGT1A1 glucuronidation activities were increased. The induction of UGT1A1 proceeded following the overexpression of Nrf2 and was blocked following overexpression of Keap1, demonstrating that Keap1 suppresses Nrf2 activation of the UGT1A1 gene. Loss of function analysis for Nrf2 conducted by small interfering RNA revealed that induction of UGT1A1 was not seen in Nrf2 knock-out cells. To examine the contribution of oxidants toward the regulation of human UGT1A1 in vivo, transgenic mice bearing the human UGT1 locus (Tg-UGT1) were treated with tert-butylhydroquinone. Human UGT1A1 was markedly increased in small and large intestines as well as in liver. Gene mapping experiments including transfections of UGT1A1 reporter gene constructs into HepG2 cells coupled with functional analysis of Nrf2 expression and binding to anti-oxidant-response elements (ARE) resulted in identification of an ARE in the phenobarbital-response enhancer module region of the UGT1A1 gene. The ARE flanks the recently identified Ah receptor xenobiotic-responsive element. The results suggest that Nrf2-Keap1-dependent UGT1A1 induction by prooxidants might represent a key adaptive response to cellular oxidative stress that defends against a variety of environmental insults, including electrophile attacks and chemical carcinogenesis.  相似文献   

19.
The human UGT2B17 gene varies in copy number from zero to two per individual and also differs in mean number between populations from Africa, Europe, and East Asia. We show that such a high degree of geographical variation is unusual and investigate its evolutionary history. This required first reinterpreting the reference sequence in this region of the genome, which is misassembled from the two different alleles separated by an artifactual gap. A corrected assembly identifies the polymorphism as a 117 kb deletion arising by nonallelic homologous recombination between ~4.9 kb segmental duplications and allows the deletion breakpoint to be identified. We resequenced ~12 kb of DNA spanning the breakpoint in 91 humans from three HapMap and one extended HapMap populations and one chimpanzee. Diversity was unusually high and the time to the most recent common ancestor was estimated at ~2.4 or ~3.0 million years by two different methods, with evidence of balancing selection in Europe. In contrast, diversity was low in East Asia where a single haplotype predominated, suggesting positive selection for the deletion in this part of the world.  相似文献   

20.
Substrate-specific requirements for UGT1-dependent release from calnexin   总被引:2,自引:0,他引:2  
Newly synthesized glycoproteins displaying monoglucosylated N-glycans bind to the endoplasmic reticulum (ER) chaperone calnexin, and their maturation is catalyzed by the calnexin-associated oxidoreductase ERp57. Folding substrates are eventually released from calnexin, and terminal glucoses are removed from N-glycans. The UDP-glucose:glycoprotein glucosyltransferase (UGT1, UGGT, GT) monitors the folding state of polypeptides released from calnexin and adds back a glucose residue on N-glycans of nonnative polypeptides, thereby prolonging retention in the calnexin chaperone system for additional folding attempts. Here we show that for certain newly synthesized glycoproteins UGT1 deletion has no effect on binding to calnexin. These proteins must normally complete their folding program in one binding event. Other proteins normally undergo multiple binding events, and UGT1 deletion results in their premature release from calnexin. For other proteins, UGT1 deletion substantially delays release from calnexin, unexpectedly showing that UGT1 activity might be required for a structural maturation needed for substrate dissociation from calnexin and export from the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号