共查询到20条相似文献,搜索用时 0 毫秒
1.
ArrayExpress: a public database of gene expression data at EBI 总被引:3,自引:0,他引:3
Rocca-Serra P Brazma A Parkinson H Sarkans U Shojatalab M Contrino S Vilo J Abeygunawardena N Mukherjee G Holloway E Kapushesky M Kemmeren P Lara GG Oezcimen A Sansone SA 《Comptes rendus biologies》2003,326(10-11):1075-1078
ArrayExpress is a public repository for microarray-based gene expression data, resulting from the implementation of the MAGE object model to ensure accurate data structuring and the MIAME standard, which defines the annotation requirements. ArrayExpress accepts data as MAGE-ML files for direct submissions or data from MIAMExpress, the MIAME compliant web-based annotation and submission tool of EBI. A team of curators supports the submission process, providing assistance in data annotation. Data retrieval is performed through a dedicated web interface. Relevant results may be exported to ExpressionProfiler, the EBI based expression analysis tool available online (http://www.ebi.ac.uk/arrayexpress). 相似文献
2.
Brazma A Parkinson H Sarkans U Shojatalab M Vilo J Abeygunawardena N Holloway E Kapushesky M Kemmeren P Lara GG Oezcimen A Rocca-Serra P Sansone SA 《Nucleic acids research》2003,31(1):68-71
ArrayExpress is a new public database of microarray gene expression data at the EBI, which is a generic gene expression database designed to hold data from all microarray platforms. ArrayExpress uses the annotation standard Minimum Information About a Microarray Experiment (MIAME) and the associated XML data exchange format Microarray Gene Expression Markup Language (MAGE-ML) and it is designed to store well annotated data in a structured way. The ArrayExpress infrastructure consists of the database itself, data submissions in MAGE-ML format or via an online submission tool MIAMExpress, online database query interface, and the Expression Profiler online analysis tool. ArrayExpress accepts three types of submission, arrays, experiments and protocols, each of these is assigned an accession number. Help on data submission and annotation is provided by the curation team. The database can be queried on parameters such as author, laboratory, organism, experiment or array types. With an increasing number of organisations adopting MAGE-ML standard, the volume of submissions to ArrayExpress is increasing rapidly. The database can be accessed at http://www.ebi.ac.uk/arrayexpress. 相似文献
3.
BarleyExpress is a web-based microarray experiment data submission tool for BarleyBase, a public data resource of Affymetrix GeneChip data for plants. BarleyExpress uses the Plant Ontology vocabularies and enhances the MIAME guidelines to standardize the annotation of microarray gene expression experiments. In addition, BarleyExpress provides explicit support for factorial experiment design and template loading methods to ease the submission process for large experiments. AVAILABILITY: http://barleybase.org SUPPLEMENTARY INFORMATION: BarleyExpress Users Manual. 相似文献
4.
Analysis of variance for gene expression microarray data. 总被引:22,自引:0,他引:22
Spotted cDNA microarrays are emerging as a powerful and cost-effective tool for large-scale analysis of gene expression. Microarrays can be used to measure the relative quantities of specific mRNAs in two or more tissue samples for thousands of genes simultaneously. While the power of this technology has been recognized, many open questions remain about appropriate analysis of microarray data. One question is how to make valid estimates of the relative expression for genes that are not biased by ancillary sources of variation. Recognizing that there is inherent "noise" in microarray data, how does one estimate the error variation associated with an estimated change in expression, i.e., how does one construct the error bars? We demonstrate that ANOVA methods can be used to normalize microarray data and provide estimates of changes in gene expression that are corrected for potential confounding effects. This approach establishes a framework for the general analysis and interpretation of microarray data. 相似文献
5.
Cluster-Rasch models for microarray gene expression data 总被引:1,自引:0,他引:1
Background
We propose two different formulations of the Rasch statistical models to the problem of relating gene expression profiles to the phenotypes. One formulation allows us to investigate whether a cluster of genes with similar expression profiles is related to the observed phenotypes; this model can also be used for future prediction. The other formulation provides an alternative way of identifying genes that are over- or underexpressed from their expression levels in tissue or cell samples of a given tissue or cell type.Results
We illustrate the methods on available datasets of a classification of acute leukemias and of 60 cancer cell lines. For tumor classification, the results are comparable to those previously obtained. For the cancer cell lines dataset, we found four clusters of genes that are related to drug response for many of the 90 drugs that we considered. In addition, for each type of cell line, we identified genes that are over- or underexpressed relative to other genes.Conclusions
The cluster-Rasch model provides a probabilistic model for describing gene expression patterns across samples and can be used to relate gene expression profiles to phenotypes. 相似文献6.
Stephan C Hamacher M Blüggel M Körting G Chamrad D Scheer C Marcus K Reidegeld KA Lohaus C Schäfer H Martens L Jones P Müller M Auyeung K Taylor C Binz PA Thiele H Parkinson D Meyer HE Apweiler R 《Proteomics》2005,5(14):3560-3562
The Bioinformatics Committee of the HUPO Brain Proteome Project (HUPO BPP) meets regularly to execute the post-lab analyses of the data produced in the HUPO BPP pilot studies. On July 7, 2005 the members came together for the 5th time at the European Bioinformatics Institute (EBI) in Hinxton, UK, hosted by Rolf Apweiler. As a main result, the parameter set of the semi-automated data re-analysis of MS/MS spectra has been elaborated and the subsequent work steps have been defined. 相似文献
7.
The comparison of gene expression profiles among DNA microarray experiments enables the identification of unknown relationships among experiments to uncover the underlying biological relationships. Despite the ongoing accumulation of data in public databases, detecting biological correlations among gene expression profiles from multiple laboratories on a large scale remains difficult. Here, we applied a module (sets of genes working in the same biological action)-based correlation analysis in combination with a network analysis to Arabidopsis data and developed a 'module-based correlation network' (MCN) which represents relationships among DNA microarray experiments on a large scale. We developed a Web-based data analysis tool, 'AtCAST' (Arabidopsis thaliana: DNA Microarray Correlation Analysis Tool), which enables browsing of an MCN or mining of users' microarray data by mapping the data into an MCN. AtCAST can help researchers to find novel connections among DNA microarray experiments, which in turn will help to build new hypotheses to uncover physiological mechanisms or gene functions in Arabidopsis. 相似文献
8.
Timothy J Robinson Michaela A Dinan Mark Dewhirst Mariano A Garcia-Blanco James L Pearson 《BMC bioinformatics》2010,11(1):108
Background
Over the past two decades more than fifty thousand unique clinical and biological samples have been assayed using the Affymetrix HG-U133 and HG-U95 GeneChip microarray platforms. This substantial repository has been used extensively to characterize changes in gene expression between biological samples, but has not been previously mined en masse for changes in mRNA processing. We explored the possibility of using HG-U133 microarray data to identify changes in alternative mRNA processing in several available archival datasets. 相似文献9.
Srinivasasainagendra V Page GP Mehta T Coulibaly I Loraine AE 《Plant physiology》2008,147(3):1004-1016
CressExpress is a user-friendly, online, coexpression analysis tool for Arabidopsis (Arabidopsis thaliana) microarray expression data that computes patterns of correlated expression between user-entered query genes and the rest of the genes in the genome. Unlike other coexpression tools, CressExpress allows characterization of tissue-specific coexpression networks through user-driven filtering of input data based on sample tissue type. CressExpress also performs pathway-level coexpression analysis on each set of query genes, identifying and ranking genes based on their common connections with two or more query genes. This allows identification of novel candidates for involvement in common processes and functions represented by the query group. Users launch experiments using an easy-to-use Web-based interface and then receive the full complement of results, along with a record of tool settings and parameters, via an e-mail link to the CressExpress Web site. Data sets featured in CressExpress are strictly versioned and include expression data from MAS5, GCRMA, and RMA array processing algorithms. To demonstrate applications for CressExpress, we present coexpression analyses of cellulose synthase genes, indolic glucosinolate biosynthesis, and flowering. We show that subselecting sample types produces a richer network for genes involved in flowering in Arabidopsis. CressExpress provides direct access to expression values via an easy-to-use URL-based Web service, allowing users to determine quickly if their query genes are coexpressed with each other and likely to yield informative pathway-level coexpression results. The tool is available at http://www.cressexpress.org. 相似文献
10.
Sample classification and class prediction is the aim of many gene expression studies. We present a web-based application, Prophet, which builds prediction rules and allows using them for further sample classification. Prophet automatically chooses the best classifier, along with the optimal selection of genes, using a strategy that renders unbiased cross-validated errors. Prophet is linked to different microarray data analysis modules, and includes a unique feature: the possibility of performing the functional interpretation of the molecular signature found. Availability: Prophet can be found at the URL http://prophet.bioinfo.cipf.es/ or within the GEPAS package at http://www.gepas.org/ Supplementary information: http://gepas.bioinfo.cipf.es/tutorial/prophet.html. 相似文献
11.
12.
13.
L2L is a database consisting of lists of differentially expressed genes compiled from published mammalian microarray studies,
along with an easy-to-use application for mining the database with the user's own microarray data. As illustrated by re-analysis
of a recent study of diabetic nephropathy, L2L identifies novel biological patterns in microarray data, providing insights
into the underlying nature of biological processes and disease. L2L is available online at the authors' website []. 相似文献
14.
15.
16.
17.
18.
Filtering is a common practice used to simplify the analysis of microarray data by removing from subsequent consideration probe sets believed to be unexpressed. The m/n filter, which is widely used in the analysis of Affymetrix data, removes all probe sets having fewer than m present calls among a set of n chips. The m/n filter has been widely used without considering its statistical properties. The level and power of the m/n filter are derived. Two alternative filters, the pooled p-value filter and the error-minimizing pooled p-value filter are proposed. The pooled p-value filter combines information from the present-absent p-values into a single summary p-value which is subsequently compared to a selected significance threshold. We show that pooled p-value filter is the uniformly most powerful statistical test under a reasonable beta model and that it exhibits greater power than the m/n filter in all scenarios considered in a simulation study. The error-minimizing pooled p-value filter compares the summary p-value with a threshold determined to minimize a total-error criterion based on a partition of the distribution of all probes' summary p-values. The pooled p-value and error-minimizing pooled p-value filters clearly perform better than the m/n filter in a case-study analysis. The case-study analysis also demonstrates a proposed method for estimating the number of differentially expressed probe sets excluded by filtering and subsequent impact on the final analysis. The filter impact analysis shows that the use of even the best filter may hinder, rather than enhance, the ability to discover interesting probe sets or genes. S-plus and R routines to implement the pooled p-value and error-minimizing pooled p-value filters have been developed and are available from www.stjuderesearch.org/depts/biostats/index.html. 相似文献
19.
Statistical design and the analysis of gene expression microarray data 总被引:18,自引:0,他引:18
Gene expression microarrays are an innovative technology with enormous promise to help geneticists explore and understand the genome. Although the potential of this technology has been clearly demonstrated, many important and interesting statistical questions persist. We relate certain features of microarrays to other kinds of experimental data and argue that classical statistical techniques are appropriate and useful. We advocate greater attention to experimental design issues and a more prominent role for the ideas of statistical inference in microarray studies. 相似文献