共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
The relation of pulsus paradoxus to chronic, stable obstructive disease of the airways has not previously been described. Pulsus paradoxus was observed in 66% of 68 patients with such disease but in none of 14 healthy individuals. There was a significant correlation between the degree of pulsus paradoxus and the forced expiratory volume in 1 second (FEV1) in the subgroup of patients with bronchial asthma but not in the subgroup with chronic bronchitis or emphysema, or both. There was no correlation between the degree of pulsus paradoxus and the degree of hyperinflation in either group. Hence factors other than hyperinflation contribute importantly to the decrease in systolic pressure that occurs at full inflation of the lungs. 相似文献
3.
Human hepatoma up-regulated protein (HURP), a cell-cycle regulator, is found consistently overexpressed in human hepatocellular carcinoma. At present, the function of HURP in cell-cycle regulation and carcinogenesis remains unclear. In database mining, we have identified a mars gene in Drosophila, which encodes a protein with a high similarity to HURP in its guanylate kinase-associated protein (GKAP) motif. Overexpression but not down-regulation of mars in eye discs resulted in a higher mitotic index along with a high frequency of mitotic defects, including misalignment of chromosomes and mispositioned centrosomes, at the second mitotic wave (SMW). The consequence of mitotic defects impairs cell-cycle progression, and causes cell death posterior to the furrow. Immunocytochemical studies also have indicated that the expression of Mars is cell cycle regulated, and that its subcellular localization is dynamically changed during cell-cycle progression. Furthermore, we also demonstrated that the first 198 amino acids at the N-terminus of Mars are responsible for the degradation of Mars in non-mitotic cells. Together, we report the use Drosophila eye as a model system to characterize the function of the mars gene in cell-cycle regulation. 相似文献
4.
We consider 12 event-related potentials and one electroencephalogram measure as disease-related traits to compare alcohol-dependent individuals (cases) to unaffected individuals (controls). We use two approaches: 1) two-way analysis of variance (with sex and alcohol dependency as the factors), and 2) likelihood ratio tests comparing sex adjusted values of cases to controls assuming that within each group the trait has a 2 (or 3) component normal mixture distribution. In the second approach, we test the null hypothesis that the parameters of the mixtures are equal for the cases and controls. Based on the two-way analysis of variance, we find 1) males have significantly (p < 0.05) lower mean response values than females for 7 of these traits. 2) Alcohol-dependent cases have significantly lower mean response than controls for 3 traits. The mixture analysis of sex-adjusted values of 1 of these traits, the event-related potential obtained at the parietal midline channel (ttth4), found the appearance of a 3-component normal mixture in cases and controls. The mixtures differed in that the cases had significantly lower mean values than controls and significantly different mixing proportions in 2 of the 3 components. Implications of this study are: 1) Sex needs to be taken into account when studying risk factors for alcohol dependency to prevent finding a spurious association between alcohol dependency and the risk factor. 2) Mixture analysis indicates that for the event-related potential "ttth4", the difference observed reflects strong evidence of heterogeneity of response in both the cases and controls. 相似文献
5.
M M Pinto 《Acta cytologica》1986,30(6):657-661
Cardiac tamponade due to malignant effusion, though rarely the initial manifestation of malignancy, is usually secondary to adenocarcinoma of the lung. Two cases are reported. One patient presented with cardiac tamponade; the other had diffuse cutaneous involvement of the left neck and shoulder two months before he presented with cardiac tamponade. Cytologic examination of both fluids revealed adenocarcinoma. Ultrastructural examination showed poorly differentiated adenocarcinoma in the first patient and bronchioloalveolar carcinoma in the second; carcinoembryonic antigen levels in the fluids were 9.4 ng/mL and over 60 ng/mL, respectively. The computed tomographic (CT) scans of both patients revealed mediastinal fullness with no lung involvement. Even in the absence of a pulmonary mass, lung carcinoma may be the likely primary in patients with malignant pericardial effusions. 相似文献
6.
In this article, we introduce a rapid, protein sequence database-driven approach to characterize all contacting residue pairs present in protein hybrids for inconsistency with protein family structural features. This approach is based on examining contacting residue pairs with different parental origins for different types of potentially unfavorable interactions (i.e. electrostatic repulsion, steric hindrance, cavity formation and hydrogen bond disruption). The identified clashing residue pairs between members of a protein family are then contrasted against functionally characterized hybrid libraries. Comparisons for five different protein recombination studies available in the literature: (i) glycinamide ribonucleotide transformylase (GART) from Escherichia coli (purN) and human (hGART), (ii) human Mu class glutathione S-transferase (GST) M1-1 and M2-2, (iii) beta-lactamase TEM-1 and PSE-4, (iv) catechol-2,3-oxygenase xylE and nahH, and (v) dioxygenases (toluene dioxygenase, tetrachlorobenzene dioxygenase and biphenyl dioxygenase) reveal that the patterns of identified clashing residue pairs are remarkably consistent with experimentally found patterns of functional crossover profiles. Specifically, we show that the proposed residue clash maps are on average 5.0 times more effective than randomly generated clashes and 1.6 times more effective than residue contact maps at explaining the observed crossover distributions among functional members of hybrid libraries. This suggests that residue clash maps can provide quantitative guidelines for the placement of crossovers in the design of protein recombination experiments. 相似文献
7.
8.
9.
10.
11.
Laura M. Bergner Richard J. Orton Ana da Silva Filipe Andrew E. Shaw Daniel J. Becker Carlos Tello Roman Biek Daniel G. Streicker 《Molecular ecology resources》2019,19(1):128-143
Microbial communities play an important role in organismal and ecosystem health. While high‐throughput metabarcoding has revolutionized the study of bacterial communities, generating comparable viral communities has proven elusive, particularly in wildlife samples where the diversity of viruses and limited quantities of viral nucleic acid present distinctive challenges. Metagenomic sequencing is a promising solution for studying viral communities, but the lack of standardized methods currently precludes comparisons across host taxa or localities. Here, we developed an untargeted shotgun metagenomic sequencing protocol to generate comparable viral communities from noninvasively collected faecal and oropharyngeal swabs. Using samples from common vampire bats (Desmodus rotundus), a key species for virus transmission to humans and domestic animals, we tested how different storage media, nucleic acid extraction procedures and enrichment steps affect viral community detection. Based on finding viral contamination in foetal bovine serum, we recommend storing swabs in RNAlater or another nonbiological medium. We recommend extracting nucleic acid directly from swabs rather than from supernatant or pelleted material, which had undetectable levels of viral RNA. Results from a low‐input RNA library preparation protocol suggest that ribosomal RNA depletion and light DNase treatment reduce host and bacterial nucleic acid, and improve virus detection. Finally, applying our approach to twelve pooled samples from seven localities in Peru, we showed that detected viral communities saturated at the attained sequencing depth, allowing unbiased comparisons of viral community composition. Future studies using the methods outlined here will elucidate the determinants of viral communities across host species, environments and time. 相似文献
12.
Ulrike Obertegger Hilary A. Smith Giovanna Flaim Robert L. Wallace 《Hydrobiologia》2011,662(1):157-162
Ecological research is moving from a species-based to a functional-based approach to better understand the underlying principles
that govern community dynamics. Studies of functional-based ecology, however, have been limited for zooplankton and particularly
for rotifers. While rotifers show a variety of trophi types and coronal shapes, suggesting the importance of niche differentiation
in their feeding strategy, relatively little is known of how this relates to rotifer dynamics. We used the guild ratio (GR′,
a ratio of raptorial to microphagous species), an index based on a functional trait (i.e. feeding strategy), as a novel approach
to rotifer dynamics. We extracted the seasonal GR′ by using seasonal trend decomposition and investigated similarities between
study sites (Lake Washington, USA and Lake Caldonazzo, Italy) and its relation to cladocerans by cross-correlation analysis.
Our study indicated that (i) raptorial and microphagous rotifers showed alternating dominance, and that raptorial rotifers
and cladocerans had a synchronous pattern, (ii) the seasonal pattern of the GR′ was consistent across different sampling frequencies,
and (iii) the GR′ was similar in both lakes. We interpreted these patterns as the general strength of the GR′: discernment
of species–environment relationships and robustness across sampling regimes. The limitations of the GR′ (i.e. species identity
is neglected, simplification of food preferences) can also be seen as its strong point: synthesis of multi-species patterns.
In addition, the independence of GR′ from species-level identification and its potential to make use of datasets with infrequent
sampling intervals and low taxon resolution could further support its innovative aspect. 相似文献
13.
Background
The currently used k th order Markov models estimate the probability of generating a single nucleotide conditional upon the immediately preceding (gap = 0) k units. However, this neither takes into account the joint dependency of multiple neighboring nucleotides, nor does it consider the long range dependency with gap>0. 相似文献14.
This paper considers a model of the human cardiovascular-respiratory control system with one and two transport delays in the state equations describing the respiratory system. The effectiveness of the control of the ventilation rate is influenced by such transport delays because blood gases must be transported a physical distance from the lungs to the sensory sites where these gases are measured. The short term cardiovascular control system does not involve such transport delays although delays do arise in other contexts such as the baroreflex loop (see [46]) for example. This baroreflex delay is not considered here. The interaction between heart rate, blood pressure, cardiac output, and blood vessel resistance is quite complex and given the limited knowledge available of this interaction, we will model the cardiovascular control mechanism via an optimal control derived from control theory. This control will be stabilizing and is a reasonable approach based on mathematical considerations as well as being further motivated by the observation that many physiologists cite optimization as a potential influence in the evolution of biological systems (see, e.g., Kenner [29] or Swan [62]). In this paper we adapt a model, previously considered (Timischl [63] and Timischl et al. [64]), to include the effects of one and two transport delays. We will first implement an optimal control for the combined cardiovascular-respiratory model with one state space delay. We will then consider the effects of a second delay in the state space by modeling the respiratory control via an empirical formula with delay while the the complex relationships in the cardiovascular control will still be modeled by optimal control. This second transport delay associated with the sensory system of the respiratory control plays an important role in respiratory stability. As an application of this model we will consider congestive heart failure where this transport delay is larger than normal and the transition from the quiet awake state to stage 4 (NREM) sleep. The model can be used to study the interaction between cardiovascular and respiratory function in various situations as well as to consider the influence of optimal function in physiological control system performance.Supported by FWF (Austria) under grant F310 as a subproject of the Special Research Center F003 Optimization and ControlMathematics Subject Classification (2000): 92C30, 49J15 相似文献
15.
The zebrafish (Danio rerio) has become a popular model for human cardiac diseases and pharmacology including cardiac arrhythmias and its electrophysiological basis. Notably, the phenotype of zebrafish cardiac action potential is similar to the human cardiac action potential in that both have a long plateau phase. Also the major inward and outward current systems are qualitatively similar in zebrafish and human hearts. However, there are also significant differences in ionic current composition between human and zebrafish hearts, and the molecular basis and pharmacological properties of human and zebrafish cardiac ionic currents differ in several ways. Cardiac ionic currents may be produced by non-orthologous genes in zebrafish and humans, and paralogous gene products of some ion channels are expressed in the zebrafish heart. More research on molecular basis of cardiac ion channels, and regulation and drug sensitivity of the cardiac ionic currents are needed to enable rational use of the zebrafish heart as an electrophysiological model for the human heart. 相似文献
16.
17.
Roterman I Konieczny L Jurkowski W Prymula K Banach M 《Journal of theoretical biology》2011,283(1):60-70
This paper introduces a new model that enables researchers to conduct protein folding simulations. A two-step in silico process is used in the course of structural analysis of a set of fast-folding proteins. The model assumes an early stage (ES) that depends solely on the backbone conformation, as described by its geometrical properties—specifically, by the V-angle between two sequential peptide bond planes (which determines the radius of curvature, also called R-radius, according to a second-degree polynomial form). The agreement between the structure under consideration and the assumed model is measured in terms of the magnitude of dispersion of both parameters with respect to idealized values. The second step, called late-stage folding (LS), is based on the “fuzzy oil drop” model, which involves an external hydrophobic force field described by a three-dimensional Gauss function. The degree of conformance between the structure under consideration and its idealized model is expressed quantitatively by means of the Kullback-Leibler entropy, which is a measure of disparity between the observed and expected hydrophobicity distributions. A set of proteins, representative of the fast-folding group - specifically, cold shock proteins - is shown to agree with the proposed model. 相似文献
18.
Peirlinck M. Sahli Costabal F. Sack K. L. Choy J. S. Kassab G. S. Guccione J. M. De Beule M. Segers P. Kuhl E. 《Biomechanics and modeling in mechanobiology》2019,18(6):1987-2001
Biomechanics and Modeling in Mechanobiology - Heart failure is a progressive chronic condition in which the heart undergoes detrimental changes in structure and function across multiple scales in... 相似文献
19.
Gorden DL Ivanova PT Myers DS McIntyre JO VanSaun MN Wright JK Matrisian LM Brown HA 《PloS one》2011,6(8):e22775
Background and Aims
The spectrum of nonalcoholic fatty liver disease (NAFLD) includes steatosis, nonalcoholic steatohepatitis (NASH), and progression to cirrhosis. While differences in liver lipids between disease states have been reported, precise composition of phospholipids and diacylglycerols (DAG) at a lipid species level has not been previously described. The goal of this study was to characterize changes in lipid species through progression of human NAFLD using advanced lipidomic technology and compare this with a murine model of early and advanced NAFLD.Methods
Utilizing mass spectrometry lipidomics, over 250 phospholipid and diacylglycerol species (DAGs) were identified in normal and diseased human and murine liver extracts.Results
Significant differences between phospholipid composition of normal and diseased livers were demonstrated, notably among DAG species, consistent with previous reports that DAG transferases are involved in the progression of NAFLD and liver fibrosis. In addition, a novel phospholipid species (ether linked phosphatidylinositol) was identified in human cirrhotic liver extracts.Conclusions
Using parallel lipidomics analysis of murine and human liver tissues it was determined that mice maintained on a high-fat diet provide a reproducible model of NAFLD in regards to specificity of lipid species in the liver. These studies demonstrated that novel lipid species may serve as markers of advanced liver disease and importantly, marked increases in DAG species are a hallmark of NAFLD. Elevated DAGs may contribute to altered triglyceride, phosphatidylcholine (PC), and phosphatidylethanolamine (PE) levels characteristic of the disease and specific DAG species might be important lipid signaling molecules in the progression of NAFLD. 相似文献20.
BRCA1 plays a central role in DNA repair. Although N‐terminal RING and C‐terminal BRCT domains are studied well, the functions of the central region of BRCA1 are poorly characterized. Here, we report a structural and functional analysis of BRCA1 alleles and functional human BRCA1 in chicken B‐lymphocyte cell line DT40. The combination of “homologous recombineering” and “RT‐cassette” enables modifications of chicken BRCA1 gene in Escherichia coli. Mutant BRCA1 knock‐in DT40 cell lines were generated using BRCA1 mutation constructs by homologous recombination with a targeting efficiency of up to 100%. Our study demonstrated that deletion of motifs 2–9 BRCA1Δ/Δ181‐1415 (Caenorhabditis elegans BRCA1 mimic) or deletion of motif 1 BRCA1Δ/Δ126‐136 decreased cell viability following cisplatin treatment. Furthermore, deletion of motifs 5 and 6 BRCA1Δ/Δ525‐881 within DNA‐binding region, even the conserved 7‐amino acid deletion BRCA1Δ/Δ872‐878 within motif 6, caused a decreased cell viability upon cisplatin treatment. Surprisingly, human BRCA1 is functional in DT40 cells as indicated by DNA damage‐induced Rad 51 foci formation in human BRCA1 knock‐in DT40 cells. These results demonstrate that those conserved motifs within the central region are essential for DNA repair functions of BRCA1. These findings provide a valuable tool for the development of new therapeutic modalities of breast cancer linked to BRCA1. 相似文献