首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interspecific hybridization is recognized as an important process in the evolutionary dynamics of both speciation and the reversal of speciation. However, our understanding of the spatial and temporal patterns of hybridization that erode versus promote species boundaries is incomplete. The endangered, endemic koloa maoli (or Hawaiian duck, Anas wyvilliana) is thought to be threatened with genetic extinction through ongoing hybridization with an introduced congener, the feral mallard (A. platyrhynchos). We investigated spatial and temporal variation in hybrid prevalence in populations throughout the main Hawaiian Islands, using genomic data to characterize population structure of koloa, quantify the extent of hybridization, and compare hybrid proportions over time. To accomplish this, we genotyped 3,308 double‐digest restriction‐site‐associated DNA (ddRAD) loci in 425 putative koloa, mallards, and hybrids from populations across the main Hawaiian Islands. We found that despite a population decline in the last century, koloa genetic diversity is high. There were few hybrids on the island of Kaua?i, home to the largest population of koloa. By contrast, we report that sampled populations outside of Kaua?i can now be characterized as hybrid swarms, in that all individuals sampled were of mixed koloa × mallard ancestry. Further, there is some evidence that these swarms are stable over time. These findings demonstrate spatial variation in the extent and consequences of interspecific hybridization, and highlight how islands or island‐like systems with small population sizes may be especially prone to genetic extinction when met with a congener that is not reproductively isolated.  相似文献   

2.
Interspecific hybridization has been implicated in population declines for some waterfowl species within the mallard complex, and hybridization with mallards (Anas platyrhynchos) is currently considered the largest threat to mottled ducks (A. fulvigula), one North American member of that complex. We assessed genetic variation among 225 mottled ducks and mallards using five microsatellite loci, and detected significant overall differences between these species within two geographic areas. We characterized hybridization in Florida, where mottled ducks are endemic and mallards are beginning to appear on the breeding grounds, and in South Carolina, where mottled ducks were introduced outside their native range. We used Bayesian genetic mixture analysis in an attempt to distinguish between these closely related species. In Florida, we detected two distinct genetic groups, and 10.9% of our samples from Florida mottled ducks were inferred to have been hybrids. In contrast only 3.4% of Florida mallards were inferred to have been hybrids, suggesting asymmetric hybridization. Populations from different geographic areas within Florida exhibited hybridization rates ranging from 0% to 24%. These data indicate a genetic component would be appropriate in actively managing interspecific hybridization in Florida mottled ducks. In contrast, South Carolina mottled ducks and mallards cannot be differentiated.  相似文献   

3.
The nonmigratory and endemic Florida mottled duck (Anas fulvigula fulvigula) is facing conservation threats from the combined effects of urbanization and introgressive hybridization with feral mallards (Anas platyrhynchos) and mallard x mottled duck hybrids. In the past, the status of the Florida mottled duck population was assessed during annual aerial surveys and most brown ducks (mottled ducks, mallards, and hybrids of them) detected during the survey would have been mottled ducks. But the release of domesticated mallards for aesthetic purposes has led to increases in the prevalence of mallards-hybrids (mallards or mallard x mottled duck hybrids) throughout peninsular Florida, USA, and because it is impossible to differentiate among mottled ducks, female mallards, and hybrids during aerial surveys, helicopter surveys were halted in 2009 until state researchers could conduct a range-wide study to determine what proportion of brown ducks are mottled ducks versus mallards-hybrids. We used plumage keys and high-resolution photography to categorize brown ducks from 557 wetland grid points as either mottled ducks or mallards-hybrids. Of the 5,179 brown ducks categorized, 40.1% were mottled ducks and 59.9% were mallards-hybrids. We used logistic regression analysis to model the interactive effect of a site's latitude and level of urbanization (urban gradient value within a 2-km buffer) to generate a predictive raster surface (1-km resolution) of the study area with values corresponding to the probability that a brown duck observed within a cell is a pure mottled duck. Predicted values will be used as correction factors when estimating final mottled duck population abundance from brown-duck survey data. Additionally, the predictive raster surface will be used to identify wetlands where mottled ducks remain predominant so that these sites can be targeted for preservation. Overall, mallards-hybrids outnumbered mottled ducks throughout most of peninsular Florida, especially in more urbanized regions, and their current prevalence rate presents a serious conservation threat, via hybridization, to extant mottled duck populations.  相似文献   

4.
Knowledge about population structure and connectivity of waterfowl species, especially mallards (Anas platyrhynchos), is a priority because of recent outbreaks of avian influenza. Ringing studies that trace large‐scale movement patterns have to date been unable to detect clearly delineated mallard populations. We employed 363 single nucleotide polymorphism markers in combination with population genetics and phylogeographical approaches to conduct a population genomic test of panmixia in 801 mallards from 45 locations worldwide. Basic population genetic and phylogenetic methods suggest no or very little population structure on continental scales. Nor could individual‐based structuring algorithms discern geographical structuring. Model‐based coalescent analyses for testing models of population structure pointed to strong genetic connectivity among the world's mallard population. These diverse approaches all support the conclusion that there is a lack of clear population structure, suggesting that the world's mallards, perhaps with minor exceptions, form a single large, mainly interbreeding population.  相似文献   

5.
Speciation is regarded primarily as a bifurcation from an ancestral species into two distinct taxonomic units, but gene flow can create complex signals of phylogenetic relationships, especially among different loci. We evaluated several hypotheses that could account for phylogenetic discord between mitochondrial DNA (mtDNA) and nuclear DNA (nuDNA) within Hawaiian duck (Anas wyvilliana), including stochastic lineage sorting, mtDNA capture and widespread genomic introgression. Our results best support the hypothesis that the contemporary Hawaiian duck is descended from an ancient hybridization event between the mallard (Anas platyrhynchos) and Laysan duck (Anas laysanensis). Whereas mtDNA clearly shows a sister relationship between Hawaiian duck and mallard, nuDNA is consistent with a genetic mosaic with nearly equal contributions from Laysan duck and mallard. In addition, coalescent analyses suggest that gene flow from either mallard or Laysan duck, depending on the predefined tree topology, is necessary to explain contemporary genetic diversity in Hawaiian ducks, and these estimates are more consistent with ancient, rather than contemporary, hybridization. Time since divergence estimates suggest that the genetic admixture event occurred around the Pleistocene–Holocene boundary, which is further supported by circumstantial evidence from the Hawaiian subfossil record. Although the extent of reproductive isolation from either putative parental taxon is not currently known, these species are phenotypically, genetically and ecologically different, and they meet primary criteria used in avian taxonomy for species designation. Thus, the available data are consistent with an admixed origin and support the hypothesis that the Hawaiian duck may represent a young hybrid species.  相似文献   

6.
Under drift-mutation equilibrium, genetic diversity is expected to be correlated with effective population size (N e ). Changes in population size and gene flow are two important processes that can cause populations to deviate from this expected relationship. In this study, we used DNA sequences from six independent loci to examine the influence of these processes on standing genetic diversity in endemic mottled ducks (Anas fulvigula) and geographically widespread mallards (A. platyrhynchos), two species known to hybridize. Mottled ducks have an estimated census size that is about two orders-of-magnitude smaller than that of mallards, yet these two species have similar levels of genetic diversity, especially at nuclear DNA. Coalescent analyses suggest that a population expansion in the mallard at least partly explains this discrepancy, but the mottled duck harbors higher genetic diversity and apparent N e than expected for its census size even after accounting for a population decline. Incorporating gene flow into the model, however, reduced the estimated N e of mottled ducks to 33 % of the equilibrium N e and yielded an estimated N e consistent with census size. We also examined the utility of these loci to distinguish among mallards, mottled ducks, and their hybrids. Most putatively pure individuals were correctly assigned to species, but the power for detecting hybrids was low. Although hybridization with mallards potentially poses a conservation threat to mottled ducks by creating a risk of extinction by hybridization, introgression of mallard alleles has helped maintain high genetic diversity in mottled ducks and might be important for the adaptability and survival of this species.  相似文献   

7.
In order to elucidate the domestication history of Peking ducks, 190 blood samples from six Chinese indigenous duck breeds were collected with186 individualsgenotyped by 15 microsatellite markers. Both the FST and Nei’s standard genetic distances (Ds) from the microsatellite data indicated high genetic differentiation between Peking duck and other Chinese indigenous breeds. The haplotype network with mtDNA data showed that most of the Peking duck haplotypes were distinctly different from those of other domestic breeds. Although the H01 haplotype was shared by all domesticated duck breeds, Peking ducks displayed 12 specific domestic duck haplotypes, including four similar haplotypes H02, H04, H08 and H22, that formed a single haplogroup (A). Both H02 and H22 haplotypes were also shared by mallard and Peking ducks, indicating that Peking ducks originated from wild mallard ducks.  相似文献   

8.
Aim Vitis subg. Vitis provides an example of a plant disjunction occurring in the Northern Hemisphere. It shows broad morphological variation but is assumed to be a species complex with limited genetic differentiation. Based on a comprehensive sampling of taxa and polymorphism in both chloroplast and nuclear DNA, we assessed genetic variation within this subgenus. Our aims were to clarify the relationships among species and to examine their historical biogeography. Location Asia, Europe, North America. Methods We analysed a total of 30 species and putative hybrids from subgenus Vitis and examined the infra‐specific variation in some species. Polymorphism in chloroplast DNA was assessed in trnL and trnH–psbA–trnK sequences (c. 2170 bp) and in 15 microsatellite loci. We also obtained nuclear data for size variation at 24 microsatellite loci. Phylogenetic inference was performed with Bayesian analyses. A maximum parsimony network was constructed to depict the evolutionary relationships among haplotypes, and microsatellite data were also subjected to hierarchical clustering analysis using the Ward distance. In addition, we assessed size homoplasy by sequencing both chloroplast and nuclear microsatellite loci. Results Chloroplast polymorphisms resolved subgenus Vitis as a monophyletic group with limited genetic variation. The ancestral haplotypes were found in Eurasia. American taxa all harboured derived haplotypes. Most of them formed a monophyletic group that did not include Vitis californica. The four main haplotypes in Vitis vinifera corresponded to two different origins. Nuclear microsatellites indicated that genetic variation was especially large in North America. Asian species exhibited a lower level of nuclear divergence and the European V. vinifera corresponded to a differentiated nuclear lineage. Main conclusions We obtained some evidence that subgenus Vitis has an Asian origin and then dispersed to Europe and North America. Geographic separation was followed by diversification, presumably during the Pleistocene, resulting in phylogeographic patterns similar to other biota. In contrast to chloroplast DNA, nuclear DNA shows a larger than expected genetic variation. Our molecular data also highlight the need to re‐examine certain aspects of the current subgeneric classification.  相似文献   

9.
From 1974 to 1976, a breeding program was used to produce hybrids of black ducks and mallards for the evaluation of inheritance patterns of serum proteins and serum, liver and muscle enzymes. In addition to the crosses designed to produce hybrids, a series of matings in 1975 and 1976 were designed to evaluate inheritance patterns of a hybrid with either a black duck or mallard. At the F1 level, hybrids were easily distinguished using serum proteins. However, once a hybrid was crossed back to either a mallard or black duck, only 12–23% of the progeny were distinguishable from black ducks or mallards using serum proteins and 23–39% using esterases. Muscle, serum and liver enzymes were similar between the two species.  相似文献   

10.
Interspecific hybridization among Hawaiian species ofCyrtandra (Gesneriaceae) was investigated using randomly amplified polymorphic DNA (RAPD) markers. Thirty-three different primers were used to investigate interspecific hybridization for 17 different putative hybrids based on morphological intermediacy and sympatry with putative parental species. RAPD data provided evidence for the hybrid origin of all putative hybrid taxa examined in this analysis. However, the patterns in the hybrid taxa were not found to be completely additive of the patterns found in the parental species. Markers missing in the hybrid taxa can be attributed to polymorphism in the populations of the parental species and the dominant nature of inheritance for RAPD markers. Unique markers found within hybrid taxa require further explanation but do not necessarily indicate that the taxa are not of hybrid origin. The implications suggest that these interspecific hybridization events had, and continue to have, an effect on the adaptive radiation and conservation biology ofCyrtandra.  相似文献   

11.
Resolving evolutionary relationships and establishing population structure depends on molecular diagnosability that is often limited for closely related taxa. Here, we use 3,200 ddRAD‐seq loci across 290 mallards, American black ducks, and putative hybrids to establish population structure and estimate hybridization rates. We test between traditional assignment probability and accumulated recombination events based analyses to assign hybrids to generational classes. For hybrid identification, we report the distribution of recombination events complements ADMIXTURE simulation by extending resolution past F4 hybrid status; however, caution against hybrid assignment based on accumulated recombination events due to an inability to resolve F1 hybrids. Nevertheless, both analyses suggest that there are relatively few backcrossed stages before a lineage's hybrid ancestry is lost and the offspring are effectively parental again. We conclude that despite high rates of observed interspecific hybridization between mallards and black ducks in the middle part of the 20th century, our results do not support the predicted hybrid swarm. Conversely, we report that mallard samples genetically assigned to western and non‐western clusters. We indicate that these non‐western mallards likely originated from game‐farm stock, suggesting landscape level gene flow between domestic and wild conspecifics.  相似文献   

12.
Deep-sea spiny eels (Notacanthidae) were previously reported from the Hawaiian Archipelago; however, these reports lacked detailed information to confirm the identity of the species. We provide collection and taxonomic data for the earlier records. The first central Pacific specimen of Lipogenys gillii is reported from Hawai’i Island. A record of Notacanthus abbotti from the Hancock Seamounts, at the northern end of the Archipelago, is confirmed. Specimens from Maui, main Hawaiian Islands, previously reported as N. chemnitzii, are reidentified as N. abbotti. The Hawaiian records of notacanthids are the only reports of the family from the Pacific tectonic plate.  相似文献   

13.
Phylogenetic relationships, demographic history, and geographic distribution of the mtDNA haplotypes of the mallard Anas platyrhynchos were examined in three populations, Indian, Northern European, and Far Eastern. Two divergent halotype groups, A and B, were found in the Far Eastern population, while haplotypes identified in Northern European and Far Eastern populations were exclusively of the A group. The presence of B group haplotypes in the Far Eastern population can be explained either in terms of hybridization of the mallard with spot-billed duck Anas zonorhyncha at the south of the Russian Far East, or by the mtDNA paraphyly in mallards. In general, mallards from Eurasia were characterized by low genetic population differentiation along with slightly expressed phylogeographic structure. The most differentiated was the population from India (??st = 0.076?0.077), while the difference between Northern European and Far Eastern populations was extremely low (??st = 0.0029). Differentiation of Anas platyrhynchos Indian population was determined by the fact that a part of the population, inhabiting southern and eastern coasts of the Hindustan Peninsula, was resident.  相似文献   

14.
North Carolina, USA, represents the southern extent of the American black duck's (Anas rubripes) breeding range. Mallards (A. platyrhynchos) are present on the breeding grounds of the American black duck and hybridization is observed between these species; therefore, we assessed the genetic integrity, hybridization rates, and population structure of this local breeding population. We extracted genomic and mitochondrial DNA from chorioallantoic membranes and contour feathers from monitored black duck nests. We then prepared the extracted DNA for analysis using high-throughput DNA sequencing methods (ddRAD-seq). First, we assessed nuclear and mitochondrial population structure, genetic diversity, and differentiation across samples from North Carolina, and compared them against 199 genetically vetted mallards, black ducks, and mallard × black duck hybrids that served as genetic references. Next, we tested for parentage and sibling relationship and overall relatedness of black ducks in North Carolina. We recovered strong population structure and high co-ancestry across genetic markers due to interrelatedness among sampled nests in North Carolina and concluded that black ducks have been locally breeding in this area for a prolonged period of time. Despite a high level of interrelatedness among our samples, nucleotide diversity was similar to the reference continental black duck population, suggesting little effect of genetic drift, including inbreeding. Additionally, we conclude that molecular diversity of black ducks in North Carolina is maintained at reference population levels through the influx of genetic material from unrelated, migrating male black ducks. Finally, we report a hybridization level of 47.5%, covering 3 filial generations. Of identified hybrids, 54.7% and 53% were the direct result of interbreeding between black ducks and captive-reared or wild mallards, respectively. We conclude that because of high rates of interspecific hybridization and successive backcrossing events, introgression from wild and feral mallards is occurring into this population of breeding black ducks and requires careful consideration in future management efforts. © 2021 The Wildlife Society.  相似文献   

15.
Hybridization and gene flow between diverging lineages are increasingly recognized as common evolutionary processes, and their consequences can vary from hybrid breakdown to adaptive introgression. We have previously found a population of wood ant hybrids between Formica aquilonia and F. polyctena that shows antagonistic effects of hybridization: females with introgressed alleles show hybrid vigour, whereas males with the same alleles show hybrid breakdown. Here, we investigate whether hybridization is a general phenomenon in this species pair and analyse 647 worker samples from 16 localities in Finland using microsatellite markers and a 1200‐bp mitochondrial sequence. Our results show that 27 sampled nests contained parental‐like gene pools (six putative F. polyctena and 21 putative F. aquilonia) and all remaining nests (69), from nine localities, contained hybrids of varying degrees. Patterns of genetic variation suggest these hybrids arise from several hybridization events or, instead, have backcrossed to the parental gene pools to varying extents. In contrast to expectations, the mitochondrial haplotypes of the parental species were not randomly distributed among the hybrids. Instead, nests that were closer to parental‐like F. aquilonia for nuclear markers preferentially had F. polyctena's mitochondria and vice versa. This systematic pattern suggests there may be underlying selection favouring cytonuclear mismatch and hybridization. We also found a new hybrid locality with strong genetic differences between the sexes similar to those predicted under antagonistic selection on male and female hybrids. Further studies are needed to determine the selective forces that act on male and female genomes in these newly discovered hybrids.  相似文献   

16.
Bryde’s whales (Balaenoptera brydei) differ from other typical baleen whale species because they are restricted to tropical and warm temperate waters in major oceans, and frequent trans-equatorial movement has been suggested for the species. We tested this hypothesis by analyzing genetic variation at 17 microsatellite loci (N = 508) and 299 bp of mitochondrial DNA (mtDNA) control region sequences (N = 472) in individuals obtained from the western North Pacific, South Pacific, and eastern Indian Ocean. Combined use of microsatellite and mtDNA markers allowed us to distinguish between contemporary gene flow and ancestral polymorphism and to describe sex-specific philopatry. A high level of genetic diversity was found within the samples. Both nuclear and mtDNA markers displayed similar population structure, indicating a lack of sex-specific philopatry. Spatial structuring was detected using both frequency-based population parameters and individual-based Bayesian approaches. Whales in the samples from different oceanic regions came from genetically distinct populations with evidence of limited gene flow. We observed low mtDNA sequence divergence among populations and a lack of concordance between geographic and phylogenetic position of mtDNA haplotypes, suggesting recent separation of populations rather than frequent trans-equatorial and inter-oceanic movement. We conclude that current gene flow between Bryde’s whale populations is low and that effective management actions should treat them as separate entities to ensure continued existence of the species.  相似文献   

17.
Jørgensen S  Mauricio R 《Genetica》2005,123(1-2):171-179
Hybridization is increasingly recognized as a significant creative force in evolution. Interbreeding among species can lead to the creation of novel genotypes and morphologies that lead to adaptation. On the Hawaiian island of Oahu, populations of two species of plants in the endemic genus Lipochaeta grow at similar elevations in the northern Waianae Mountains. These two species represent extremes of the phenotypic distribution of leaf shape: the leaves of Lipochaeta tenuifolia individuals are compound and highly dissected while leaves of L. tenuis are simple. Based primarily on leaf shape morphology, a putative hybrid population of Lipochaeta located at Puu Kawiwi was identified. Individuals in this population exhibit a range of leaf shapes intermediate in varying degrees between the leaf shapes of the putative parental species. We analyzed individuals from pure populations of L. tenuifolia, L. tenuis and the putative hybrids using 133 AFLP markers. Genetic analysis of these neutral markers provided support for the hybrid origin of this population. The correlation between genetic background and leaf morphology in the hybrids suggested that the genome of the parental species with simple leaves might have significantly contributed to the evolution of a novel, compound leaf morphology.  相似文献   

18.
Along with manipulating habitat, the direct release of domesticated individuals into the wild is a practice used worldwide to augment wildlife populations. We test between possible outcomes of human‐mediated secondary contact using genomic techniques at both historical and contemporary timescales for two iconic duck species. First, we sequence several thousand ddRAD‐seq loci for contemporary mallards (Anas platyrhynchos) throughout North America and two domestic mallard types (i.e., known game‐farm mallards and feral Khaki Campbell's). We show that North American mallards may well be becoming a hybrid swarm due to interbreeding with domesticated game‐farm mallards released for hunting. Next, to attain a historical perspective, we applied a bait‐capture array targeting thousands of loci in century‐old (1842–1915) and contemporary (2009–2010) mallard and American black duck (Anas rubripes) specimens. We conclude that American black ducks and mallards have always been closely related, with a divergence time of ~600,000 years before present, and likely evolved through prolonged isolation followed by limited bouts of gene flow (i.e., secondary contact). They continue to maintain genetic separation, a finding that overturns decades of prior research and speculation suggesting the genetic extinction of the American black duck due to contemporary interbreeding with mallards. Thus, despite having high rates of hybridization, actual gene flow is limited between mallards and American black ducks. Conversely, our historical and contemporary data confirm that the intensive stocking of game‐farm mallards during the last ~100 years has fundamentally changed the genetic integrity of North America's wild mallard population, especially in the east. It thus becomes of great interest to ask whether the iconic North American mallard is declining in the wild due to introgression of maladaptive traits from domesticated forms. Moreover, we hypothesize that differential gene flow from domestic game‐farm mallards into the wild mallard population may explain the overall temporal increase in differentiation between wild black ducks and mallards, as well as the uncoupling of genetic diversity and effective population size estimates across time in our results. Finally, our findings highlight how genomic methods can recover complex population histories by capturing DNA preserved in traditional museum specimens.  相似文献   

19.
Translocating species is an important management tool to establish or expand the range of species. Success of translocations requires an understanding of potential consequences, including whether a sufficient number of individuals were used to minimize founder effects and if interspecific hybridization poses a threat. We provide an updated and comprehensive genetic assessment of a 1970s–1980s translocation and now established mottled duck (Anas fulvigula) population in South Carolina, USA. In addition to examining the population genetics of these mottled ducks, we simulated expected genetic assignments for generational hybrids (F1–F10), permitting formal purity assignment across samples to identify true hybrids and establish hybridization rates. In addition to wild mallards (A. platyrhynchos), we tested for presence of hybrids with migrant American black ducks (A. rubripes) and released domestic game-farm mallards (A. p. domesticus). We used wild reference populations of North American mallard-like ducks and sampled game-farm mallards from 2 sites in South Carolina that could potentially interbreed with mottled ducks. Despite 2 different subspecies of mottled duck (Florida [A. f. fulvigula] and the Western Gulf Coast [A. f. maculatlus]) used in original translocations, we determined the gene pool of the Western Gulf Coast mottled duck was overwhelmingly represented in South Carolina's current population. We found no evidence of founder effects or inbreeding and concluded the original translocation of 1,285 mottled ducks was sufficient to maintain current genetic diversity. We identified 7 hybrids, including an F1 and 3 late-staged (i.e., F2–F3 backcrosses) mottled duck × black duck hybrids, 1 F2-mottled duck backcrossed with a wild mallard, and 2 F3-mottled ducks introgressed with game-farm mallard. We estimated a 15% hybridization rate in our mottled duck dataset; however, the general lack of F1 and intermediate hybrids were inconsistent with scenarios of high hybridization rates or presence of a hybrid swarm. Instead, our results suggested a scenario of infrequent interspecific hybridization between South Carolina's mottled ducks and congeners. We concluded that South Carolina's mottled duck population is sufficiently large now to absorb current hybridization rates because 85% of sampled mottled ducks were pure. These results demonstrate the importance in managing and maintaining large parental populations to counter hybridization. As such, future population management of mottled ducks in South Carolina will benefit from increased geographical and continued sampling to monitor hybridization rates with closely related congeners. We also suggest that any future translocations of mottled ducks to coastal South Carolina should originate from the Western Gulf Coast. © 2021 The Wildlife Society.  相似文献   

20.
The knowledge of breeding impacts on the genetic diversity of hybrids of Eucalyptus is crucial to the exploration of genetic resources. We estimated genetic polymorphic parameters of 112 hybrids of Eucalyptus spp. using 10 genomic simple sequence repeats (SSR) markers and 10 expressed sequence tags (EST) microsatellite markers. According to Student’s t-test, there were no significant differences between genomic SSR and EST-SSR markers. Our results also revealed high polymorphism in the hybrids analyzed, indicating that both markers are appropriate for use in genetic breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号