首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Much of our understanding about how carbon (C) is allocated in plants comes from radiocarbon (14C) pulse‐chase labeling experiments. However, the large amounts of 14C required for decay‐counting mean that these studies have been restricted for the most part to mesocosm or controlled laboratory experiments. Using the enhanced sensitivity for 14C detection available with accelerator mass spectrometry (AMS), we tested the utility of a low‐level 14C pulse‐chase labeling technique for quantifying C allocation patterns and the contributions of different plant components to total ecosystem respiration in a black spruce forest stand in central Manitoba, Canada. All aspects of the field experiment used 14C at levels well below regulated health standards, without significantly altering atmospheric CO2 concentrations. Over 30 days following the label application in late summer (August and September), we monitored the temporal and spatial allocation patterns of labeled photosynthetic products by measuring the amount and 14C content of CO2 respired from different ecosystem components. The mean residence times (MRT) for labeled photosynthetic products to be respired in the understory (feather mosses), canopy (black spruce), and rhizosphere (black spruce roots and associated microbes) were <1, 6, and 15 days, respectively. Respiration from the canopy and understory showed significantly greater influence of labeled photosynthates than excised root and intact rhizosphere respiration. After 30 days,∼65% of the label assimilated had been respired by the canopy,∼20% by the rhizosphere, and∼9% by the understory, with∼6% unaccounted for and perhaps remaining in tissues. Maximum 14C values in root and rhizosphere respiration were reached 4 days after label application. The label was still detectable in root, rhizosphere and canopy respiration after 30 days; these levels of remaining label would not have been detectible had a 13C label been applied. Our results support previous studies indicating that a substantial portion of the C fueling rhizosphere respiration in the growing season may be derived from stored C pools rather than recent photosynthetic products.  相似文献   

2.
The substrate supply system for respiration of the shoot and root of perennial ryegrass (Lolium perenne) was characterized in terms of component pools and the pools' functional properties: size, half-life, and contribution to respiration of the root and shoot. These investigations were performed with perennial ryegrass growing in constant conditions with continuous light. Plants were labeled with (13)CO(2)/(12)CO(2) for periods ranging from 1 to 600 h, followed by measurements of the rates and (13)C/(12)C ratios of CO(2) respired by shoots and roots in the dark. Label appearance in roots was delayed by approximately 1 h relative to shoots; otherwise, the tracer time course was very similar in both organs. Compartmental analysis of respiratory tracer kinetics indicated that, in both organs, three pools supplied 95% of all respired carbon (a very slow pool whose kinetics could not be characterized provided the remaining 5%). The pools' half-lives and relative sizes were also nearly identical in shoot and root (half-life < 15 min, approximately 3 h, and 33 h). An important role of short-term storage in supplying respiration was apparent in both organs: only 43% of respiration was supplied by current photosynthate (fixed carbon transferred directly to centers of respiration via the two fastest pools). The residence time of carbon in the respiratory supply system was practically the same in shoot and root. From this and other evidence, we argue that both organs were supplied by the same pools and that the residence time was controlled by the shoot via current photosynthate and storage deposition/mobilization fluxes.  相似文献   

3.
Carbon pools and fluxes along an environmental gradient in northern Arizona   总被引:15,自引:4,他引:11  
Carbon pools and fluxes were quantified along an environmentalgradient in northern Arizona. Data are presented on vegetation, litter, andsoil C pools and soil CO2 fluxesfrom ecosystems ranging from shrub-steppe through woodlands to coniferousforest and the ecotones in between. Carbon pool sizes and fluxes in thesesemiarid ecosystems vary with temperature and precipitation and are stronglyinfluenced by canopy cover. Ecosystem respiration is approximately 50percent greater in the more mesic, forest environment than in the dryshrub-steppe environment. Soil respiration rates within a site varyseasonally with temperature but appear to be constrained by low soilmoisture during dry summer months, when approximately 75% of totalannual soil respiration occurs. Total annual amount of CO2 respired across all sites ispositively correlated with annual precipitation and negatively correlatedwith temperature. Results suggest that changes in the amount and periodicityof precipitation will have a greater effect on C pools and fluxes than willchanges in temperature in the semiarid Southwestern United States.  相似文献   

4.
How soil carbon balance will be affected by plant–mycorrhizal interactions under future climate scenarios remains a significant unknown in our ability to forecast ecosystem carbon storage and fluxes. We examined the effects of soil temperature (14, 20, 26 °C) on the structure and extent of a multispecies community of arbuscular mycorrhizal (AM) fungi associated with Plantago lanceolata. To isolate fungi from roots, we used a mesh‐divided pot system with separate hyphal compartments near and away from the plant. A 13C pulse label was then used to trace the flow of recently fixed photosynthate from plants into belowground pools and respiration. Temperature significantly altered the structure and allocation of the AM hyphal network, with a switch from more vesicles (storage) in cooled soils to more extensive extraradical hyphal networks (growth) in warmed soils. As soil temperature increased, we also observed an increase in the speed at which plant photosynthate was transferred to and respired by roots and AM fungi coupled with an increase in the amount of carbon respired per unit hyphal length. These differences were largely independent of plant size and rates of photosynthesis. In a warmer world, we would therefore expect more carbon losses to the atmosphere from AM fungal respiration, which are unlikely to be balanced by increased growth of AM fungal hyphae.  相似文献   

5.
M. Werth  Y. Kuzyakov 《Plant and Soil》2006,284(1-2):319-333
Coupling 13C natural abundance and 14C pulse labelling enabled us to investigate the dependence of 13C fractionation on assimilate partitioning between shoots, roots, exudates, and CO2 respired by maize roots. The amount of recently assimilated C in these four pools was controlled by three levels of nutrient supply: full nutrient supply (NS), 10 times diluted nutrient supply (DNS), and deionised water (DW). After pulse labelling of maize shoots in a 14CO2 atmosphere, 14C was traced to determine the amounts of recently assimilated C in the four pools and the δ13C values of the four pools were measured. Increasing amounts of recently assimilated C in the roots (from 8% to 10% of recovered 14C in NS and DNS treatments) led to a 0.3‰ 13C enrichment from NS to DNS treatments. A further increase of C allocation in the roots (from 10% to 13% of recovered 14C in DNS and DW treatments) resulted in an additional enrichment of the roots from DNS to DW treatments by 0.3‰. These findings support the hypothesis that 13C enrichment in a pool increases with an increasing amount of C transferred into that pool. δ13C of CO2 evolved by root respiration was similar to that of the roots in DNS and DW treatments. However, if the amount of recently assimilated C in root respiration was reduced (NS treatment), the respired CO2 became 0.7‰ 13C depleted compared to roots. Increasing amounts of recently assimilated C in the CO2 from NS via DNS to DW treatments resulted in a 1.6‰ δ13C increase of root respired CO2 from NS to DW treatments. Thus, for both pools, i.e. roots and root respiration, increasing amounts of recently assimilated C in the pool led to a δ13C increase. In DW and DNS plants there was no 13C fractionation between roots and exudates. However, high nutrient supply decreased the amount of recently assimilated C in exudates compared to the other two treatments and led to a 5.3‰ 13C enrichment in exudates compared to roots. We conclude that 13C discrimination between plant pools and within processes such as exudation and root respiration is not constant but strongly depends on the amount of C in the respective pool and on partitioning of recently assimilated C between plant pools. Section Editor: H. Lambers  相似文献   

6.
Soil is the largest carbon reservoir in terrestrial ecosystems; it stores twice as much carbon as the atmosphere. It is well documented that global warming can lead to accelerated microbial decomposition of soil organic carbon (SOC) and enhance the release of CO2 from the soil to the atmosphere; however, the magnitude and timing of this effect remain highly uncertain due to a lack of quantitative data concerning the heterogeneity of SOC biodegradability. Therefore, we sought to identify SOC pools with respect to their specific mean residence times (MRTs), to use those SOC pools to partition soil respiration sources, and to estimate the potential response of the pools to warming. We collected surface soil and litter samples from a cool-temperate deciduous forest in Japan, chemically separated the samples into SOC fractions, estimated their MRTs based on radiocarbon (14C) isotope measurements, and used the data to construct a model representing the soil as a complex of six SOC pools with different MRT ranges. We estimate that a minor, fast-cycling SOC pool with an MRT of less than 10 years (corresponding to the O horizon and recognizable plant leaf fragments in the A1 horizon) is responsible for 73% of annual heterotrophic respiration and 44% of total soil respiration. However, the predicted response of these pools to warming demonstrates that the rate of SOC loss from the fast-cycling SOC pool diminishes quickly (within several decades) because of limited substrate availability. In contrast, warming will continue to accelerate SOC loss from slow-cycling pools with MRTs of 20–200 years over the next century. Although using a 14C-based approach has drawbacks, these estimates provide quantitative insights into the potential importance of slow-cycling SOC dynamics for the prediction of positive feedback to climate change.  相似文献   

7.
How rapidly newly assimilated carbon (C) is invested into recalcitrant structures of forests, and how closely C pools and fluxes are tied to photosynthesis, is largely unknown. A crane and a purpose-built free-air CO2 enrichment (FACE) system permitted us to label the canopy of a mature deciduous forest with 13C-depleted CO2 for 4 yr and continuously trace the flow of recent C through the forest without disturbance. Potted C4 grasses in the canopy ('isometers') served as a reference for the C-isotope input signal. After four growing seasons, leaves were completely labelled, while newly formed wood (tree rings) still contained 9% old C. Distinct labels were found in fine roots (38%) and sporocarps of mycorrhizal fungi (62%). Soil particles attached to fine roots contained 9% new C, whereas no measurable signal was detected in bulk soil. Soil-air CO2 consisted of 35% new C, indicating that considerable amounts of assimilates were rapidly returned back to the atmosphere. These data illustrate a relatively slow dilution of old mobile C pools in trees, but a pronounced allocation of very recent assimilates to C pools of short residence times.  相似文献   

8.
Soil carbon is returned to the atmosphere through the process of soil respiration, which represents one of the largest fluxes in the terrestrial C cycle. The effects of climate change on the components of soil respiration can affect the sink or source capacity of ecosystems for atmospheric carbon, but no current techniques can unambiguously separate soil respiration into its components. Long‐term free air CO2 enrichment (FACE) experiments provide a unique opportunity to study soil C dynamics because the CO2 used for fumigation has a distinct isotopic signature and serves as a continuous label at the ecosystem level. We used the 13C tracer at the Duke Forest FACE site to follow the disappearance of C fixed before fumigation began in 1996 (pretreatment C) from soil CO2 and soil‐respired CO2, as an index of belowground C dynamics during the first 8 years of the experiment. The decay of pretreatment C as detected in the isotopic composition of soil‐respired CO2 and soil CO2 at 15, 30, 70, and 200 cm soil depth was best described by a model having one to three exponential pools within the soil system. The majority of soil‐respired CO2 (71%) originated in soil C pools with a turnover time of about 35 days. About 55%, 50%, and 68% of soil CO2 at 15, 30, and 70 cm, respectively, originated in soil pools with turnover times of less than 1 year. The rest of soil CO2 and soil‐respired CO2 originated in soil pools that turn over at decadal time scales. Our results suggest that a large fraction of the C returned to the atmosphere through soil respiration results from dynamic soil C pools that cannot be easily detected in traditionally defined soil organic matter standing stocks. Fast oxidation of labile C substrates may prevent increases in soil C accumulation in forests exposed to elevated [CO2] and may consequently result in shorter ecosystem C residence times.  相似文献   

9.
Separating ecosystem and soil respiration into autotrophic and heterotrophic component sources is necessary for understanding how the net ecosystem exchange of carbon (C) will respond to current and future changes in climate and vegetation. Here, we use an isotope mass balance method based on radiocarbon to partition respiration sources in three mature black spruce forest stands in Alaska. Radiocarbon (Δ14C) signatures of respired C reflect the age of substrate C and can be used to differentiate source pools within ecosystems. Recently‐fixed C that fuels plant or microbial metabolism has Δ14C values close to that of current atmospheric CO2, while C respired from litter and soil organic matter decomposition will reflect the longer residence time of C in plant and soil C pools. Contrary to our expectations, the Δ14C of C respired by recently excised black spruce roots averaged 14‰ greater than expected for recently fixed photosynthetic products, indicating that some portion of the C fueling root metabolism was derived from C storage pools with turnover times of at least several years. The Δ14C values of C respired by heterotrophs in laboratory incubations of soil organic matter averaged 60‰ higher than the contemporary atmosphere Δ14CO2, indicating that the major contributors to decomposition are derived from a combination of sources consistent with a mean residence time of up to a decade. Comparing autotrophic and heterotrophic Δ14C end members with measurements of the Δ14C of total soil respiration, we calculated that 47–63% of soil CO2 emissions were derived from heterotrophic respiration across all three sites. Our limited temporal sampling also observed no significant differences in the partitioning of soil respiration in the early season compared with the late season. Future work is needed to address the reasons for high Δ14C values in root respiration and issues of whether this method fully captures the contribution of rhizosphere respiration.  相似文献   

10.
Effects of the arbuscular mycorrhizal fungus (AMF) Glomus hoi on the carbon economy of perennial ryegrass (Lolium perenne) were investigated by comparing nonmycorrhizal and mycorrhizal plants of the same size, morphology and phosphorus status. Plants were grown in the presence of CO2 sources with different C isotope composition (delta13C -1 or -44). Relative respiration and gross photosynthesis rates, and belowground allocation of C assimilated during one light period ('new C'), as well as its contribution to respiration, were quantified by the concerted use of 13CO2/12CO2 steady-state labelling and 13CO2/12CO2 gas-exchange techniques. AMF (G. hoi) enhanced the relative respiration rate of the root + soil system by 16%, inducing an extra C flow amounting to 3% of daily gross photosynthesis. Total C flow into AMF growth and respiration was estimated at < 8% of daily gross photosynthesis. This was associated with a greater amount of new C allocated belowground and respired in mycorrhizal plants. AMF colonization affected the sources supplying belowground respiration, indicating a greater importance of plant C stores in supplying respiration and/or the participation of storage pools within fungal tissues. When ontogenetic and nutritional effects were accounted for, AMF increased belowground C costs, which were not compensated by increased photosynthesis rates. Therefore the instantaneous relative growth rate was lower in mycorrhizal plants.  相似文献   

11.
Understanding environmental and physiological controls of the variations in δ(13) C of CO(2) respired (δ(13) C(R)) from different compartments of an ecosystem is important for separation of CO(2) fluxes and to assess coupling between assimilation and respiration. In a wheat field, over 3 days we characterised the temporal dynamics of δ(13) C(R) from shoots and roots, from the soil and from the whole agroecosystem. To evaluate the basis of potential variations in δ(13) C(R), we also measured δ(13) C in different organic matter pools, as well as meteorological and gas exchange parameters. We observed strong diel variations up to ca. 6% in shoot, root and soil δ(13) C(R), but not in δ(13) C of the putative organic substrates for respiration, which varied by not more than ca. 1% within 24 h. Whole ecosystem-respired CO(2) was least depleted in (13) C in the afternoon and most negative in the early morning. We assume that temporally variable respiratory carbon isotope fractionation and changes in fluxes through metabolic pathways, rather than photosynthetic carbon isotope fractionation, governs the δ(13) C of respired CO(2) at the diel scale, and thus provides insights into the metabolic processes related to respiration under field conditions.  相似文献   

12.
宋明华  陈锦  蒋婧  王枫  于飞海 《生态学报》2020,40(11):3688-3697
外源氮素(N)输入陆地生态系统后会引起植物和土壤各碳库的变化,但是对不同化学形态氮素的长期输入如何影响光合碳在植物组织、土壤、土壤呼吸中的分配及转运知之甚少,尤其是对于氮输入引起光合碳分配变化进而作用于植物和土壤碳库的机制的认识还非常匮乏。基于在青藏高原矮嵩草草甸开展的不同化学形态氮素添加的长期实验,利用~(13)C示踪方法揭示了光合碳在植物地上、地下组织的分配,及其随时间在土壤中的滞留和随土壤呼吸的释放。研究结果表明,外源氮素添加10年后,与对照未添加氮素处理相比,氨态氮处理下的地上生物量增加了49.5%,氨态氮处理下的地下生物量增加了111.3%。土壤中滞留的~(13)C整体呈下降趋势,氨态氮处理下的土壤碳库显著高于硝态氮处理下的值。不同处理下的土壤呼吸中~(13)C的滞留量随时间呈指数衰减的变化趋势,其中,硝态氮处理下的~(13)C衰减最快。~(13)C同位素标记后第1天测定植物茎和叶内的~(13)C约占刚刚标定完茎和叶内~(13)C的80%,不同处理之间没有显著性差异。直至标记后的第30天,茎和叶内~(13)C的滞留量约占初始量的30%。硝态氮处理下的值在第21天和第30天显著低于对照和氨态氮处理下的值,表明硝态氮处理下,植物光合固定的碳在短期内迅速输入地下组织和土壤中。这些结果从机理上阐明了植物光合碳分配对不同化学形态氮素长期输入的响应,进而影响到土壤呼吸CO_2的释放,以及对土壤碳库动态的贡献。加深了对高寒草甸土壤有机碳库稳定性维持机制的认识,能够为高寒草地的科学管理以及资源的可持续利用提供理论指导。  相似文献   

13.
Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C) of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes) were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence). Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR) were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C) were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes.  相似文献   

14.
Annual grass invasion into shrub-dominated ecosystems is associated with changes in nutrient cycling that may alter nitrogen (N) limitation and retention. Carbon (C) applications that reduce plant-available N have been suggested to give native perennial vegetation a competitive advantage over exotic annual grasses, but plant community and N retention responses to C addition remain poorly understood in these ecosystems. The main objectives of this study were to (1) evaluate the degree of N limitation of plant biomass in intact versus B. tectorum-invaded sagebrush communities, (2) determine if plant N limitation patterns are reflected in the strength of tracer 15N retention over two growing seasons, and (3) assess if the strength of plant N limitation predicts the efficacy of carbon additions intended to reduce soil N availability and plant growth. Labile C additions reduced biomass of exotic annual species; however, growth of native A. tridentata shrubs also declined. Exotic annual and native perennial plant communities had divergent responses to added N, with B. tectorum displaying greater ability to use added N to rapidly increase aboveground biomass, and native perennials increasing their tissue N concentration but showing little growth response. Few differences in N pools between the annual and native communities were detected. In contrast to expectations, however, more 15N was retained over two growing seasons in the invaded annual grass than in the native shrub community. Our data suggest that N cycling in converted exotic annual grasslands of the northern Intermountain West, USA, may retain N more strongly than previously thought.  相似文献   

15.
In water-limited ecosystems, small rainfall events can have dramatic impacts on microbial activity and soil nutrient pools. Plant community phenology and life span also affect soil resources by determining the timing and quantity of plant nutrient uptake, storage, and release. Using the replacement of C3–C4 perennial grasses by the invasive annual grass Bromus tectorum as a case study, we investigated the influence of phenology and life span on pulse responses and sizes of soil carbon (C) and nitrogen (N) pools. We hypothesized that available and microbial C and N would respond to small rainfall events and that B. tectorum invasion would increase soil C and N pools by reducing inter-annual plant C and N storage and alter seasonal pool dynamics by changing the timing of plant uptake and litter inputs. We tested our hypotheses by simulating small rainfall events in B. tectorum and perennial grass communities three times during the growing season. Microbial pools responded strongly to soil moisture and simulated rainfall events, but labile C and N pools were affected weakly or not at all. All pools were larger beneath B. tectorum than perennial grasses. Soil C and N pools increased after senescence in both communities. Our results suggest that transforming a perennial into a B. tectorum dominated community increases the overall size of soil C and N pools by decreasing plant C and N storage and changes seasonal pool dynamics by altering dominant plant phenology. Our results indicate strong roles for water, life span and phenology in controlling soil C and N pools and begin to elucidate the biogeochemical effects of altering plant community phenology and life span.  相似文献   

16.
Nitrogen (N) deposition is projected to increase significantly in tropical regions in the coming decades, where changes in climate are also expected. Additional N and warming each have the potential to alter soil carbon (C) storage via changes in microbial activity and decomposition, but little is known about the combined effects of these global change factors in tropical ecosystems. In this study, we used controlled laboratory incubations of soils from a long‐term N fertilization experiment to explore the sensitivity of soil C to increased N in two N‐rich tropical forests. We found that fertilization corresponded to significant increases in bulk soil C concentrations, and decreases in C loss via heterotrophic respiration (P< 0.05). The increase in soil C was not uniform among C pools, however. The active soil C pool decomposed faster with fertilization, while slowly cycling C pools had longer turnover times. These changes in soil C cycling with N additions corresponded to the responses of two groups of microbial extracellular enzymes. Smaller active C pools corresponded to increased hydrolytic enzyme activities; longer turnover times of the slowly cycling C pool corresponded to reduced activity of oxidative enzymes, which degrade more complex C compounds, in fertilized soils. Warming increased soil respiration overall, and N fertilization significantly increased the temperature sensitivity of slowly cycling C pools in both forests. In the lower elevation forest, respired CO2 from fertilized cores had significantly higher Δ14C values than control soils, indicating losses of relatively older soil C. These results indicate that soil C storage is sensitive to both N deposition and warming in N‐rich tropical soils, with interacting effects of these two global change factors. N deposition has the potential to increase total soil C stocks in tropical forests, but the long‐term stability of this added C will likely depend on future changes in temperature.  相似文献   

17.
Productive tundra plant communities composed of a variety of fast growing herbaceous and woody plants are likely to attract mammalian herbivores. Such vegetation is likely to respond to different-sized herbivores more rapidly than currently acknowledged from the tundra. Accentuated by currently changing populations of arctic mammals there is a need to understand impacts of different-sized herbivores on the dynamics of productive tundra plant communities. Here we assess the differential effects of ungulate (reindeer) and small rodent herbivores (voles and lemmings) on high productive tundra vegetation. A spatially extensive exclosure experiment was run for three years on river sediment plains along two river catchments in low-arctic Norway. The river catchments were similar in species pools but differed in species abundance composition of both plants and vertebrate herbivores. Biomass of forbs, deciduous shrubs and silica-poor grasses increased by 40–50% in response to release from herbivory, whereas biomass of silica-rich grasses decreased by 50–75%. Hence both additive and compensatory effects of small rodents and reindeer exclusion caused these significant changes in abundance composition of the plant communities. Changes were also rapid, evident after only one growing season, and are among the fastest and strongest ever documented in Arctic vegetation. The rate of changes indicates a tight link between the dynamics of productive tundra vegetation and both small and large herbivores. Responses were however not spatially consistent, being highly different between the catchments. We conclude that despite similar species pools, variation in plant species abundance and herbivore species dynamics give different prerequisites for change.  相似文献   

18.
Soil respiration is derived from heterotrophic (decomposition of soil organic matter) and autotrophic (root/rhizosphere respiration) sources, but there is considerable uncertainty about what factors control variations in their relative contributions in space and time. We took advantage of a unique whole‐ecosystem radiocarbon label in a temperate forest to partition soil respiration into three sources: (1) recently photosynthesized carbon (C), which dominates root and rhizosphere respiration; (2) leaf litter decomposition and (3) decomposition of root litter and soil organic matter >1–2 years old. Heterotrophic sources and specifically leaf litter decomposition were large contributors to total soil respiration during the growing season. Relative contributions from leaf litter decomposition ranged from a low of ~1±3% of total soil respiration (6± 3 mg C m?2 h?1) when leaf litter was extremely dry, to a high of 42±16% (96± 38 mg C m?2 h?1). Total soil respiration fluxes varied with the strength of the leaf litter decomposition source, indicating that moisture‐dependent changes in litter decomposition drive variability in total soil respiration fluxes. In the surface mineral soil layer, decomposition of C fixed in the original labeling event (3–5 years earlier) dominated the isotopic signature of heterotrophic respiration. Root/rhizosphere respiration accounted for 16±10% to 64±22% of total soil respiration, with highest relative contributions coinciding with low overall soil respiration fluxes. In contrast to leaf litter decomposition, root respiration fluxes did not exhibit marked temporal variation ranging from 34±14 to 40±16 mg C m?2 h?1 at different times in the growing season with a single exception (88±35 mg C m?2 h?1). Radiocarbon signatures of root respired CO2 changed markedly between early and late spring (March vs. May), suggesting a switch from stored nonstructural carbohydrate sources to more recent photosynthetic products.  相似文献   

19.
Abstract A method is described in which 1 year-old chestnut coppice was fed in situ with air highly enriched in 13CO2 (23%). After 3 days, 13C concentration increases in shoots were measured by mass spectrometry. Respiratory losses between 13C feeding and harvest were estimated using two different methods: (i) a model involving the temperature response of respiration and (ii) direct measurement of 13C content of the CO2 respired by the shoots during the night. Carbon allocation to roots was deduced by subtracting from the given amount of 13C, the amount remaining in shoots and the 13C respired by the shoots. The method was tested twice during the growing season. Very little carbon was allocated to roots in late July, but over 80% of assimilated 13C went to roots at the end of September. Despite some approximations in the 13C respiratory losses estimations, the method allowed evaluation of carbon allocation to roots with an error of about 5%.  相似文献   

20.
Supply-side controls on soil respiration among Oregon forests   总被引:3,自引:0,他引:3  
To test the hypothesis that variation in soil respiration is related to plant production across a diverse forested landscape, we compared annual soil respiration rates with net primary production and the subsequent allocation of carbon to various ecosystem pools, including leaves, fine roots, forests floor, and mineral soil for 36 independent plots arranged as three replicates of four age classes in three climatically distinct forest types. Across all plots, annual soil respiration was not correlated with aboveground net primary production (R2=0.06, P>0.1) but it was moderately correlated with belowground net primary production (R2=0.46, P<0.001). Despite the wide range in temperature and precipitation regimes experienced by these forests, all exhibited similar soil respiration per unit live fine root biomass, with about 5 g of carbon respired each year per 1 g of fine root carbon (R2=0.45, P<0.001). Annual soil respiration was only weakly correlated with dead carbon pools such as forest floor and mineral soil carbon (R2=0.14 and 0.12, respectively). Trends between soil respiration, production, and root mass among age classes within forest type were inconsistent and do not always reflect cross‐site trends. These results are consistent with a growing appreciation that soil respiration is strongly influenced by the supply of carbohydrates to roots and the rhizosphere, and that some regional patterns of soil respiration may depend more on belowground carbon allocation than the abiotic constraints imposed on subsequent metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号