首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Pseudomonas protegens CHA0, known as plant-growth-promoting rhizobacterium, showed positive chemotactic responses toward proteinaceous L-amino acids. Genomic analysis revealed that P. protegens CHA0 possesses four putative chemoreceptors for amino acids (designated CtaA, CtaB, CtaC, and CtaD, respectively). Pseudomonas aeruginosa PCT2, a mutant defective in chemotaxis to amino acids, harboring a plasmid containing each of ctaA, ctaB, ctaC, and ctaD showed chemotactic responses to 20, 4, 4, and 11 types of amino acids, respectively. To enhance chemotaxis toward amino acids, we introduced the plasmids containing ctaA, ctaB, ctaC, or ctaD into P. protegens CHA0. By overexpression of the genes, we succeeded in enhancing chemotaxis toward more than half of the tested ligands. However, unexpectedly, the P. protegens CHA0 transformants showed unchanged or decreased responses to some amino acids when compared to wild-type CHA0. We speculate that alternation of expression of a chemoreceptor may affect the abundance of other chemoreceptors.  相似文献   

2.
In Escherichia coli, taxis to certain chemoeffectors is mediated through an intrinsic membrane protein called methyl-accepting chemotaxis protein I (MCP I), which is the product of the tsr gene. Mutants were selected that are defective in taxis toward all MCP I-mediated attractants (alpha-aminoisobutyrate, L-alanine, glycine, and L-serine) but are normal to MCP I-mediated repellents and to chemoeffectors mediated by other MCPs. The mutants could be divided into two classes based on their ability to respond to various concentrations of L-serine. Two MCP I-mediated L-serine systems appear to function in the wild type: one of high and one of lower affinity. The mutations responsible for the serine taxis defects map at about 99 min on the E. coli chromosome and are not complemented by episomes carrying mutations in the tsr gene; this suggests that they are defective in tsr function. Low concentrations of L-[14C]serine specifically bound to wild-type membranes with a Km of 5 microM; in contrast, there was greatly decreased binding to vesicles prepared from the new mutants or from the tsr mutant AW518. Binding of labeled serine to wild-type vesicles was inhibited by MCP I-mediated attractants, but not by MCP II-mediated attractants. The data suggest that MCP I may function as the L-serine chemoreceptor in E. coli.  相似文献   

3.
The paralogous receptors PctA, PctB and PctC of Pseudomonas aeruginosa were reported to mediate chemotaxis to amino acids, intermediates of amino acid metabolism and chlorinated hydrocarbons. We show that the recombinant ligand binding regions (LBRs) of PctA, PctB and PctC bind 17, 5 and 2 l ‐amino acids respectively. In addition, PctC‐LBR recognized GABA but not any other structurally related compound. l ‐Gln, one of the three amino acids that is not recognized by PctA‐LBR, was the most tightly binding ligand to PctB suggesting that PctB has evolved to mediate chemotaxis primarily towards l ‐Gln. Bacteria were efficiently attracted to l ‐Gln and GABA, but mutation of pctB and pctC, respectively, abolished chemoattraction. The physiological relevance of taxis towards GABA is proposed to reside in an interaction with plants. LBRs were predicted to adopt double PDC (P hoQ/D cuS/C itA) like structures and site‐directed mutagenesis studies showed that ligands bind to the membrane‐distal module. Analytical ultracentrifugation studies have shown that PctA‐LBR and PctB‐LBR are monomeric in the absence and presence of ligands, which is in contrast to the enterobacterial receptors that require sensor domain dimers for ligand recognition.  相似文献   

4.
Escherichia coli exhibits chemotactic responses to sugars, amino acids, and dipeptides, and the responses are mediated by methyl-accepting chemotaxis proteins (MCPs). Using capillary assays, we demonstrated that Escherichia coli RP437 is attracted to the pyrimidines thymine and uracil and the response was constitutively expressed under all tested growth conditions. All MCP mutants lacking the MCP Tap protein showed no response to pyrimidines, suggesting that Tap, which is known to mediate dipeptide chemotaxis, is required for pyrimidine chemotaxis. In order to confirm the role of Tap in pyrimidine chemotaxis, we constructed chimeric chemoreceptors (Tapsr and Tsrap), in which the periplasmic and cytoplasmic domains of Tap and Tsr were switched. When Tapsr and Tsrap were individually expressed in an E. coli strain lacking all four native MCPs, Tapsr mediated chemotaxis toward pyrimidines and dipeptides, but Tsrap did not complement the chemotaxis defect. The addition of the C-terminal 19 amino acids from Tsr to the C terminus of Tsrap resulted in a functional chemoreceptor that mediated chemotaxis to serine but not pyrimidines or dipeptides. These results indicate that the periplasmic domain of Tap is responsible for detecting pyrimidines and the Tsr signaling domain confers on Tapsr the ability to mediate efficient chemotaxis. A mutant lacking dipeptide binding protein (DBP) was wild type for pyrimidine taxis, indicating that DBP, which is the primary chemoreceptor for dipeptides, is not responsible for detecting pyrimidines. It is not yet known whether Tap detects pyrimidines directly or via an additional chemoreceptor protein.  相似文献   

5.
The PctA and PctB chemoreceptors of Pseudomonas aeruginosa mediate chemotaxis toward amino acids. A general feature of signal transduction processes is that a signal input is converted into an output. We have generated chimeras combining the Tar signaling domain with either the PctA or PctB ligand binding domain (LBD). Escherichia coli harboring either PctA‐Tar or PctB‐Tar mediated chemotaxis toward amino acids. The responses of both chimeras were determined using fluorescence resonance energy transfer, and the derived EC50 values are a measure of output. PctA‐Tar and PctB‐Tar responded to 19 and 11 L‐amino acids respectively. The EC50 values of PctA‐Tar responses differed by more than three orders of magnitude, whereas PctB‐Tar responded preferentially to L‐Gln. The comparison of amino acid binding constants and the corresponding EC50 values for both receptors revealed statistically significant correlations between inputs and outputs. PctA and PctB possess a double PDC (PhoQ‐DcuS‐CitA) LBD – a family of binding domain found in various other amino acid chemoreceptors. Similarly, various chemoreceptors share the preferential response to certain amino acids (e.g. L‐Cys, L‐Ser and L‐Thr) that we observed for PctA. Defining the specific inputs and outputs of these chemoreceptors is an important step toward better understanding of their physiological role.  相似文献   

6.
Halophilic archaea, such as eubacteria, use methyl-accepting chemotaxis proteins (MCPs) to sense their environment. We show here that BasT is a halobacterial transducer protein (Htp) responsible for chemotaxis towards five attractant amino acids. The C-terminus of the protein exhibits the highly conserved regions that are diagnostic for MCPs: the signalling domain for communication with the histidine kinase and the methylation sites that interact with the methylation/demethylation enzymes for adaptation. Hydropathy analysis predicts an enterobacterial-type transducer protein topology for BasT, with an extracellular putative ligand-binding domain flanked by two transmembrane helices and a cytoplasmic domain. BasT-inactivated mutant cells are missing a membrane protein radiolabelled with L-[methyl-3H]-methionine in wild-type cells, confirming that BasT is methylatable and membrane bound. Behavioural analysis of the basT mutant cells by capillary and chemical-in-plug assays demonstrates complete loss of chemotactic responses towards five (leucine, isoleucine, valine, methionine and cysteine) of the six attractant amino acids for Halobacterium salinarum, whereas they still respond to arginine. The volatile methyl group production assays also corroborate these findings and confirm that BasT signalling induces methyl group turnover. Our data identify BasT as the chemotaxis transducer protein for the branched chain amino acids leucine, isoleucine and valine as well as for methionine and cysteine. Thus, BasT and the arginine sensor Car cover the entire spectrum of chemotactic responses towards attractant amino acids in H. salinarum.  相似文献   

7.
J Kato  Y Sakai  T Nikata    H Ohtake 《Journal of bacteriology》1994,176(18):5874-5877
Pseudomonas aeruginosa PAO1 exhibited a positive chemotactic response to P(i). The chemotactic response was induced by P(i) limitation. An alkaline phosphatase (AP) constitutive mutant showed a chemotactic response to P(i), regardless of whether the cells were starved for P(i). Sequence analysis and complementation studies showed that the P. aeruginosa phoU gene was involved both in the regulation of AP expression and in the induction of P(i) taxis. However, unlike AP expression, P(i) taxis was not regulated by the phoB gene product.  相似文献   

8.
Receptors for chemotaxis in Bacillus subtilis.   总被引:3,自引:3,他引:0       下载免费PDF全文
At least three receptors for chemotaxis toward L-amino acids in Bacillus subtilis could be found with the aid of taxis competition experiments. They are called the asparagine receptor, which detects asparagine and glutamine, the isoleucine receptor, which detects isoleucine, leucine, valine, phenylalanine, serine, threonine, cysteine, and methionine, and the alanine receptor, which detects alanine and proline. Histidine and glycine could not be assigned to one of these receptors. Cysteine and methionine were found to be general inhibitors of chemotaxis and serine was found to be a general stimulator of chemotaxis. Some structural analogues of amino acids were tested for chemotactic activity. The chemotactic activity of B. subtilis is compared with that of Escherichia coli.  相似文献   

9.
An aerotaxis gene, aer, was cloned from Pseudomonas putida PRS2000. A P. putida aer mutant displayed an altered aerotactic response in a capillary assay. Wild-type P. putida clustered at the air/liquid interface. In contrast, the aer mutant did not cluster at the interface, but instead formed a diffuse band at a distance from the meniscus. Wild-type aer, provided in trans, complemented the aer mutant to an aerotactic response that was stronger than wild-type. The P. putida Aer sequence is similar over its entire length to the aerotaxis (energy taxis) signal transducer protein, Aer, of Escherichia coli. The amino-terminus is similar to redox-sensing regulatory proteins, and the carboxy-terminus contains the highly conserved domain present in chemotactic transducers.  相似文献   

10.
The regulation of amino acid chemotaxis by nitrogen was investigated in the gram-negative bacterium Pseudomonas aeruginosa. The quantitative capillary tube technique was used to measure chemotactic responses of bacteria to spatial gradients of amino acids and other attractants. Chemotaxis toward serine, arginine, and alpha-aminoisobutyrate was sharply dependent on the form in which nitrogen was presented to the bacteria. Bacteria grown on mineral salts-succinate with potassium nitrate gave responses to amino acids that were 2 to 3 times those of cells grown on ammonium sulfate and 10 to 20 times those of cells grown in mineral salts-succinate with Casamino Acids as the nitrogen source. A combination of ammonium sulfate and glutamate was as effective as Casamino Acids in depressing serine taxis. The threshold concentration for alpha-aminoisobutyrate taxis was consistently lower in nitrate-grown bacteria than in ammonia-grown bacteria. Responsiveness to sodium succinate, however, was not subject to regulation by nitrogen, and glucose chemotaxis was inhibited, rather than enhanced, in nitrate-grown bacteria. These results indicate that chemotaxis of P. aeruginosa toward amino acids is subject to regulation by nitrogen and that this regulation probably is expressed at the level of the chemoreceptors or transducers.  相似文献   

11.
Chemotaxis toward amino acids in Escherichia coli   总被引:30,自引:34,他引:30       下载免费PDF全文
Escherichia coli cells are shown to be attracted to the l-amino acids alanine, asparagine, aspartate, cysteine, glutamate, glycine, methionine, serine, and threonine, but not to arginine, cystine, glutamine, histidine, isoleucine, leucine, lysine, phenylalanine, tryptophan, tyrosine, or valine. Bacteria grown in a proline-containing medium were, in addition, attracted to proline. Chemotaxis toward amino acids is shown to be mediated by at least two detection systems, the aspartate and serine chemoreceptors. The aspartate chemoreceptor was nonfunctional in the aspartate taxis mutant, which showed virtually no chemotaxis toward aspartate, glutamate, or methionine, and reduced taxis toward alanine, asparagine, cysteine, glycine, and serine. The serine chemoreceptor was nonfunctional in the serine taxis mutant, which was defective in taxis toward alanine, asparagine, cysteine, glycine, and serine, and which showed no chemotaxis toward threonine. Additional data concerning the specificities of the amino acid chemoreceptors with regard to amino acid analogues are also presented. Finally, two essentially nonoxidizable amino acid analogues, alpha-aminoisobutyrate and alpha-methylaspartate, are shown to be attractants for E. coli, demonstrating that extensive metabolism of attractants is not required for amino acid taxis.  相似文献   

12.
A chemotaxis-defective mutant of Enterobacter cloacae IFO3320, designated EC1, was isolated after N-methyl-N'-nitro-N-nitrosoguanidine (NTG) mutagenesis. Computer-assisted capillary assays showed that EC1 failed to show chemotactic responses to peptone and inorganic phosphate (Pi). Cloning and sequence analysis showed that EC1 is a cheR mutant, suggesting that Pi taxis by E. cloacae is dependent on a methyl-accepting chemotaxis protein(s) (MCP). EC1 was further mutagenized with NTG to construct cheR pstS and cheR pstA double mutants. A recombinant plasmid pECT01.2, which contained the E. cloacae cheR gene, restored the ability of these double mutants to show chemotaxis toward peptone but not Pi. These results suggest that the phosphate-specific transport (Pst) system, together with a MCP(s), is required for detecting Pi in E. cloacae.  相似文献   

13.
The genome of the symbiotic soil bacterium Sinorhizobium meliloti contains eight genes coding for methyl-accepting chemotaxis proteins (MCPs) McpS to McpZ and one gene coding for a transducer-like protein, IcpA. Seven of the MCPs are localized in the cytoplasmic membrane via two membrane-spanning regions, whereas McpY and IcpA lack such hydrophobic regions. The periplasmic regions of McpU, McpV, and McpX contain the small-ligand-binding domain Cache. In addition, McpU possesses the ligand-binding domain TarH. By probing gene expression with lacZ fusions, we have identified mcpU and mcpX as being highly expressed. Deletion of any one of the receptor genes caused impairments in the chemotactic response toward most organic acids, amino acids, and sugars in a swarm plate assay. The data imply that chemoreceptor proteins in S. meliloti can sense more than one class of carbon source and suggest that many or all receptors work as an ensemble. Tactic responses were virtually eliminated for a strain lacking all nine receptor genes. Capillary assays revealed three important sensors for the strong attractant proline: McpU, McpX, and McpY. Receptor deletions variously affected free-swimming speed and attractant-induced chemokinesis. Noticeably, cells lacking mcpU were swimming 9% slower than the wild-type control. We infer that McpU inhibits the kinase activity of CheA in the absence of an attractant. Cells lacking one of the two soluble receptors were impaired in chemokinetic proficiency by more than 50%. We propose that the internal sensors, IcpA and the PAS domain containing McpY, monitor the metabolic state of S. meliloti.  相似文献   

14.
Chemotaxis of a motile Streptococcus toward sugars and amino acids.   总被引:6,自引:6,他引:0       下载免费PDF全文
A motile Streptococcus was isolated and its chemotactic behavior toward sugars and amino acids was studied. Motility was optimal in the presence of an exogenous energy source and a nonionic detergent, e.g., Tween 80 or Brij-36. Both glucose and pyruvate could serve as energy source. Chemotaxis toward leucine was optimal at pH 7 to 8.5 and a temperature between 30 and 37 C. The Streptococcus showed a chemotactic response toward a variety of sugars. All commonly occurring L-amino acids, except alanine, asparagine, aspartate, glutamate, arginine, and lysine, were attractants. From concentration response curves the thresholds, peak concentrations, and optimal responses were determined.  相似文献   

15.
Using PCR amplification with degenerate primers, a gene ( tlpA ) from Campylobacter coli encoding a putative 63·0 kDa polypeptide which exhibited significant identity with bacterial methyl-accepting chemotaxis proteins (MCPs) was identified. A mutant containing an inactivated copy of the tlpA gene showed a wild-type chemotactic response to all of the chemo-attractants tested. A DNA probe based on the Highly Conserved Domain (HCD) of TlpA revealed the presence of multiple copies of genes encoding MCP-like proteins in both Camp. coli and Camp. jejuni. The arrangement of restriction sites within, and proximal to, genes with homology to the HCD probe varied among strains, resulting in a high degree of polymorphism. It is demonstrated here that a DNA probe comprising the HCD region of MCP-like proteins can be used, in Southern hybridization-based assays, to provide novel information which allows the discrimination of individual strains of Camp. coli and Camp. jejuni.  相似文献   

16.
We isolated and characterized mutants defective in nuo, encoding NADH dehydrogenase I, the multisubunit complex homologous to eucaryotic mitochondrial complex I. By Southern hybridization and/or sequence analysis, we characterized three distinct mutations: a polar insertion designated nuoG::Tn10-1, a nonpolar insertion designated nuoF::Km-1, and a large deletion designated delta(nuoFGHIJKL)-1. Cells carrying any of these three mutations exhibited identical phenotypes. Each mutant exhibited reduced NADH oxidase activity, grew poorly on minimal salts medium containing acetate as the sole carbon source, and failed to produce the inner, L-aspartate chemotactic band on tryptone swarm plates. During exponential growth in tryptone broth, nuo mutants grew as rapidly as wild-type cells and excreted similar amounts of acetate into the medium. As they began the transition to stationary phase, in contrast to wild-type cells, the mutant cells abruptly slowed their growth and continued to excrete acetate. The growth defect was entirely suppressed by L-serine or D-pyruvate, partially suppressed by alpha-ketoglutarate or acetate, and not suppressed by L-aspartate or L-glutamate. We extended these studies, analyzing the sequential consumption of amino acids by both wild-type and nuo mutant cells growing in tryptone broth. During the lag and exponential phases, both wild-type and mutant cells consumed, in order, L-serine and L-aspartate. As they began the transition to stationary phase, both cell types consumed L-tryptophan. Whereas wild-type cells then consumed L-glutamate, glycine, L-threonine, and L-alanine, mutant cells utilized these amino acids poorly. We propose that cells defective for NADH dehydrogenase I exhibit all these phenotypes, because large NADH/NAD+ ratios inhibit certain tricarboxylic acid cycle enzymes, e.g., citrate synthase and malate dehydrogenase.  相似文献   

17.
Pleiotropic aspartate taxis and serine taxis mutants of Escherichia coli.   总被引:10,自引:0,他引:10  
Mutants that at one time were thought to be specifically defective in taxis toward aspartate and related amino acids (tar mutants) or specifically defective in taxis toward serine and related amino acids (tar mutants) are now shown to be pleiotropic in their defects. The tar mutants also lack taxis toward maltose and away from Co2+ and Ni2+. The tsr mutants are altered in their response to a variety of repellents. Double mutants (tar tsr) fail in nearly all chemotactic responses. The tar and tsr mutants provide evidence for two complementary, converging pathways of information flow: certain chemoreceptors feed information into the tar pathway and others into the tsr pathway. The tar and tsr products have been shown to be two different sets of methylated proteins.  相似文献   

18.
Acidovorax sp. strain JS42 is able to utilize 2-nitrotoluene (2NT) as its sole carbon, nitrogen, and energy source. We report here that strain JS42 is chemotactic to 2NT and that the response is increased when cells are grown on compounds such as 2NT that are known to induce the first step of 2NT degradation. Assays with JS42 mutants unable to oxidize 2NT showed that the first step of 2NT metabolism was required for the induced response, but not for a portion of the constitutive response, indicating that 2NT itself is an attractant. The 2NT metabolite nitrite was shown to be a strong attractant for strain JS42, and sufficient nitrite was produced during the taxis assay to account for a large part of the induced response. A mutant with an inactivated ntdY gene, which is located adjacent to the 2NT degradation genes and codes for a putative methyl-accepting chemotaxis protein, showed a defect in taxis toward 2NT that may involve a reduced response to nitrite. Responses of a mutant defective for the energy-taxis receptor, Aer, indicated that a functional aer gene is required for a substantial part of the wild-type induced response to 2NT. In summary, strain JS42 utilizes three types of taxis to sense and respond to 2NT: constitutive 2NT-specific chemotaxis to directly sense 2NT, metabolism-dependent nitrite-specific chemotaxis that may be mediated by NtdY, and energy taxis mediated by Aer.  相似文献   

19.
20.
A collection of propionibacteria was screened for bacteriocin production. A new bacteriocin named propionicin T1 was isolated from two strains of Propionibacterium thoenii. This bacteriocin shows no sequence similarity to other bacteriocins. Propionicin T1 was active against all strains of Propionibacterium acidipropionici, Propionibacterium thoenii, and Propionibacterium jensenii tested and also against Lactobacillus sake NCDO 2714 but showed no activity against Propionibacterium freudenreichii. The bacteriocin was purified, and the N-terminal part of the peptide was determined with amino acid sequencing. The corresponding gene pctA was sequenced, and this revealed that propionicin T1 is produced as a prebacteriocin of 96 amino acids with a typical sec leader, which is processed to give a mature bacteriocin of 65 amino acids. An open reading frame encoding a protein of 424 amino acids was found 68 nucleotides downstream the stop codon of pctA. The N-terminal part of this putative protein shows strong similarity with the ATP-binding cassette of prokaryotic and eukaryotic ABC transporters, and this protein may be involved in self-protection against propionicin T1. Propionicin T1 is the first bacteriocin from propionibacteria that has been isolated and further characterized at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号