首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Griffith LC 《Cell》2008,133(3):397-399
Calcium/calmodulin-dependent protein kinase II (CaMKII) is a pivotal signaling molecule in both the brain and the heart. In this issue of Cell, Erickson et al. (2008) demonstrate a mechanism for CaMKII activation by reactive oxygen species that provides a direct link between kinase activation and cardiac dysfunction.  相似文献   

2.
3.
4.
Heterotrimeric G proteins: new tricks for an old dog   总被引:5,自引:0,他引:5  
Hampoelz B  Knoblich JA 《Cell》2004,119(4):453-456
Heterotrimeric G proteins are well known for their function in signal transduction downstream of seven transmembrane receptors. More recently, however, genetic analysis in C. elegans and in Drosophila has revealed a second, essential function of these molecules in positioning the mitotic spindle and attaching microtubules to the cell cortex. Five new publications in Cell (Afshar et al., 2004; Du and Macara, 2004 [this issue of Cell]; Hess et al., 2004), Developmental Cell (Martin-McCaffrey et al., 2004), and Current Biology (Couwenbergs et al., 2004) show that this function is conserved in vertebrates and--like the classical pathway--involves cycling of G proteins between GDP and GTP bound conformations.  相似文献   

5.
6.
7.
8.
9.
Notch in the vertebrate nervous system: an old dog with new tricks   总被引:2,自引:0,他引:2  
Pierfelice T  Alberi L  Gaiano N 《Neuron》2011,69(5):840-855
The Notch pathway is prominent among those known to regulate neural development in vertebrates. Notch receptor activation can inhibit neurogenesis, maintain neural progenitor character, and in some contexts promote gliogenesis and drive binary fate choices. Recently, a wave of exciting studies has emerged, which has both solidified previously held assertions and expanded our understanding of Notch function during neurogenesis and in the adult brain. These studies have examined pathway regulators and interactions, as well as pathway dynamics, with respect to both gene expression and cell-cell signaling. Here, focusing primarily on vertebrates, we review the current literature on Notch signaling in the nervous system, and highlight numerous recent studies that have generated interesting and unexpected advances.  相似文献   

10.
Ras proteins regulate cell proliferation, survival and differentiation and are constitutively activated by somatic point mutations in many cancers. Previous studies of neurofibromatosis type 1 and Noonan syndrome also implicated hyperactive Ras in developmental disorders. Recently, germline mutations in H-RAS and K-RAS and in genes encoding other molecules in the Ras-Raf-MEK-ERK cascade were shown to underlie cases of Noonan, cardio-facio-cutaneous, and Costello syndromes. These disorders share phenotypic traits that include abnormal facial features, heart defects, and impaired growth and development. Many of these germline, disease-associated mutations encode novel Ras, Raf and MEK proteins. These studies underscore a crucial role of Ras signaling in human development.  相似文献   

11.
12.
tRNA biology has lately seen a revival with the discovery of tRNA cleavage products as mediators of stress responses. In this issue of The EMBO Journal, Blanco et al now report that tRNA methylation, by protecting from cleavage, is relevant for normal brain development. The versatility of tRNA is further emphasized by a recent study in Cell that uncovered differential expression of tRNAs as a means to accustom codon usage bias to the needs in proliferating versus differentiating cells.  相似文献   

13.
14.
15.
Skene  Keith R. 《Plant and Soil》2003,248(1-2):21-30
In this paper we examine the key elements of cluster or proteoid roots, and trace their origins back to regular root properties. By viewing the root system as being composed of two categories of surface, the high transport capacity (HTC) area, just behind the meristem, and the low transport capacity (LTC) area (the rest of the root system), based on export and import capacities, we examine root system architecture in terms of structure–function relationships, and conclude that measuring total root exudation per unit area, volume or mass will not give useful comparative data for root transport properties. Furthermore, the cluster root represents a manipulation of the HTC to LTC root surface area ratio. Increased exudation and P uptake may be no higher in individual rootlets than in other HTC regions of the root system. We also examine the transformation theory (the theory of form resulting from a series of forces, which, when altered, lead to a change, or transformation in form) as an explanation of cluster root evolution, and conclude that the cluster root requires only a change in pericycle response to depleted internal nutrient levels, with the other characteristics representing consequences stemming from the form and constraints of the root system.  相似文献   

16.
17.
Cyanobacteria have played an important role in the development of the Earth and have long been studied as model organisms for photosynthesis and the circadian rhythm. Recent developments have led to increased interest in the use of engineered cyanobacteria for the production of protein and chemical products. This review highlights the genetic tools and strategies for manipulation of cyanobacteria as well as previous accomplishments in the development of engineered cyanobacteria for applied use. Particular attention is given to the engineering of cyanobacteria for biofuel production, including both hydrocarbon and hydrogen fuels. Genetic engineering efforts to enhance cyanobacterial fitness are reviewed with an emphasis on physiological improvements for large-scale production. Lastly, a future outlook on engineered cyanobacteria is presented, highlighting the future areas of focus and technical challenges in this field. With the uncertainty of future energy security, it is an exciting time in applied cyanobacterial research, but we must take the time to learn from these past accomplishments before we can capitalize on the potential of these photosynthetic microorganisms.  相似文献   

18.
19.
《Autophagy》2013,9(11):2082-2084
Chloroquine (CQ) is exploited in clinical trials as an autophagy blocker to potentiate anticancer therapy, but it is unknown if it solely acts by inhibiting cancer cell-autonomous autophagy. Our recent study shows that besides blocking cancer cell growth, CQ also affects endothelial cells (ECs) and promotes tumor vessel normalization. This vessel normalizing effect of CQ reduces tumor hypoxia, cancer cell intravasation, and metastasis, while improving the delivery and response to chemotherapy. By compromising autophagy in melanoma cells or using mice with a conditional knockout of ATG5 in ECs, we found that the favorable effects of CQ on the tumor vasculature do not rely on autophagy. CQ-induced vessel normalization relies mainly on altered endolysosomal trafficking and sustained NOTCH1 signaling in ECs. Remarkably these CQ-mediated effects are abrogated when tumors are grown in mice harboring EC-specific deletion of NOTCH1. The autophagy-independent vessel normalization by CQ leading to improved delivery and tumor response to chemotherapy further advocates its clinical use in combination with anticancer treatments.  相似文献   

20.
Chloroquine (CQ) is exploited in clinical trials as an autophagy blocker to potentiate anticancer therapy, but it is unknown if it solely acts by inhibiting cancer cell-autonomous autophagy. Our recent study shows that besides blocking cancer cell growth, CQ also affects endothelial cells (ECs) and promotes tumor vessel normalization. This vessel normalizing effect of CQ reduces tumor hypoxia, cancer cell intravasation, and metastasis, while improving the delivery and response to chemotherapy. By compromising autophagy in melanoma cells or using mice with a conditional knockout of ATG5 in ECs, we found that the favorable effects of CQ on the tumor vasculature do not rely on autophagy. CQ-induced vessel normalization relies mainly on altered endolysosomal trafficking and sustained NOTCH1 signaling in ECs. Remarkably these CQ-mediated effects are abrogated when tumors are grown in mice harboring EC-specific deletion of NOTCH1. The autophagy-independent vessel normalization by CQ leading to improved delivery and tumor response to chemotherapy further advocates its clinical use in combination with anticancer treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号