首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J M Malinge  C Prez    M Leng 《Nucleic acids research》1994,22(19):3834-3839
Physico-chemical and immunological studies have been done in order to further characterize the distorsions induced in DNA by the interstrand cross-links formed between the antitumor drug cis-diamminedichloroplatinum (II) (cis-DDP) and two guanines on the opposite strands of DNA at the d(GC/GC) sites. Bending (45 degrees) and unwinding (79 +/- 4 degrees) were determined from the electrophoretic mobility of multimers of 21- 24-base pairs double-stranded oligonucleotides containing an interstrand cross-link in the central sequence d(TGCT/AGCA). The distorsions induced by the interstrand cross-link in the three 22-base pairs oligonucleotides d(TGCT/AGCA), d(AGCT/AGCT) and d(CGCT/AGCG) were compared by means of gel electrophoresis, circular dichroism, phenanthroline-copper footprinting and antibodies specifically directed against cis-DDP interstrand cross-links. The four different technical approaches indicate that the distorsions are independent of the chemical nature of the base pairs adjacent to the interstrand cross-link. The general conclusion is that the interstrand cross-link induces a bending and in particular an unwinding larger than other platinum adducts and the distorsions are independent of the nature of the bases (purine or pyrimidine) adjacent to the d(GC/GC) site.  相似文献   

2.
The effect of cis-diamminedichloroplatinum (II) (cis-DDP) on the formation of interstrand cross-links in DNA and in DNA and chromatin complex from leukocytes was studied. Following the use of cis-DDP the number of DNA-DNA interstrand cross-links was elevated with the increase of cis-DDP concentration and elongation of reaction time. It was also found that nucleic proteins reduce the quantity of the cis-DDP induced DNA-DNA interstrand cross-links in the DNA in nucleoprotein complex when compared with the links in the isolated DNA.  相似文献   

3.
Hofr C  Brabec V 《Biopolymers》2005,77(4):222-229
The effect of the location of the interstrand cross-link formed by trans-diamminedichloroplatinum(II) (transplatin) on the thermal stability and energetics of 15-mer DNA duplex has been investigated. The duplex containing single, site-specific cross-link, thermodynamically equivalent model structures (hairpins) and nonmodified duplexes were characterized by differential scanning calorimetry, temperature-dependent uv absorption, and circular dichroism. The results demonstrate that the formation of the interstrand cross-link of transplatin does not affect pronouncedly thermodynamic stability of DNA: the cross-link induces no marked changes not only in enthalpy, but also in "reduced" (concentration independent) monomolecular transition entropy. These results are consistent with the previous observations that interstrand cross-links of transplatin structurally perturb DNA only to a relatively small extent. On the other hand, constraining the duplex with the interstrand cross-link of transplatin results in a significant increase in thermal stability that is primarily due to entropic effects: the cross-link reduces the molecularity of the oligomer system from bimolecular to monomolecular. Importantly, the position of the interstrand cross-link within the duplex modulates cooperativity of the melting transition of the duplex and consequently its thermal stability.  相似文献   

4.
Lambda DNA loses transfectivity and acquires interstrand cross-links after treatment with either trans-Pt(II) or cis-Pt(II). With trans-Pt(II) there is close to an equivalence between the fraction of lambda DNA cross-linked and the fraction inactivated. In contrast, with cis-Pt(II) there are approx. 5 inactivating lesions for each lambda DNA interstrand cross-link. These results suggested that trans-PT(II) does not introduce intrastrand inactivating lesions into lambda DNA while cis-Pt(II) does so. To verify this conclusion, the cross-linked and uncross-linked fractions of lambda DNA treated with trans-PT(II) or cis-Pt(II) were separated on alkaline sucrose gradients. After trans-Pt(II) treatment, the uncross-linked fraction of lambda DNA was transfective when renaturated. However after cis-Pt(II) treatment the uncross-linked fraction of lambda DNA was not transfective when renatured. Thiourea treatment restored transfectivity to all inactivated fractions, showing that these lesions are reversible. We conclude that trans-Pt(II) inactivates lambda DNA primarily by introducing interstrand cross-links but that cis-Pt(II), although it also introduces interstrand cross-links, inactivates lambda DNA primarily by introducing intrastrand lesions.  相似文献   

5.
The mutagenicity and cytotoxicity of cis- and trans-Pt(II) diamminedichloride (PDD) were examined in V79 Chinese hamster lung cells and compared with effects on DNA measured by alkaline elution. DNA--protein crosslinks and DNA interstrand crosslinks were detected following doses of cis-PDD which reduced cell survival 80--90% and which produced a mutant frequency of 3 X 10(-4) at the HGPRT locus. Equitoxic doses of trans-PDD were much less mutagenic than cis-PDD. At equitoxic doses, trans-PDD produced more DNA-protein crosslinking than did cis-PDD, but interstrand crosslinking for the two isomers was comparable. Hence, the interstrand crosslink could be the cytotoxic lesion produced by these Pt compounds whereas neither of these DNA lesions are necessarily mutagenic. The mutagenesis produced by cis-PDD could be due to crosslinks of a different type than those produced by trans-PDD or it may be due to monofunctional damage.  相似文献   

6.
Walker tumour cells were shown to be uniquely sensitive to CB 1954 when compared with other cells in vitro. CB 1954 forms DNA-DNA interstrand crosslinks in a time-dependent manner in Walker tumour but not Chinese hamster cells. The absence of interstrand crosslinks in hamster cells was not due to a lack of uptake of drug but rather to a failure to convert (probably by bioreduction) CB 1954 to the required reactive difunctional intermediate.  相似文献   

7.
(SP-4-2)-Bis(2-aminoethanol)dichloroplatinum(II) (KP1356) and (SP-4-2)-bis[(R)-(-)-2-aminobutanol)]dichloroplatinum(II) (KP1433) are promising cytotoxic agents capable of changing their chemical structure depending on the pH value. On the basis of this, they are supposed to be active only in or preferentially in hypoxic tumors with low pH. In this study, we investigated the kinetics of changes of the DNA secondary structure, of the DNA modification degree, and of the formation of interstrand cross-links caused by these complexes in comparison to the parental compound cis-diamminedichloroplatinum(II) (cisplatin). All examinations were performed at physiological pH 7.4 and at pH 6.0 mimicking the acidified environment of many tumor tissues. In general, cisplatin displayed a higher reactivity accompanied by more pronounced DNA compaction, untwisting, and formation of interstrand cross-links at both pH values. Additionally, it was shown for the first time that cisplatin generates interstrand cross-links faster at pH 6.0 than at 7.4. However, the difference between pH 7.4 and 6.0 was much larger for KP1356 and KP1433 than for cisplatin, since they were essentially nonreactive and induced almost no secondary structures at pH 7.4, as contrasted to cisplatin. Our data suggest that formed adducts, i.e., intra- and/or interstrand cross-links, may be the sole cause of the cytotoxicity of KP1356 and KP1433 at pH 6.0. The results of this study may stimulate and contribute to further improvement of these novel, specific cytotoxic drugs that are anticipated to exert their full power in the tumor while being reasonably inactive in normal tissue.  相似文献   

8.
Potential of chlorpyrifos and cypermethrin forming DNA adducts   总被引:1,自引:0,他引:1  
Cui Y  Guo J  Xu B  Chen Z 《Mutation research》2006,604(1-2):36-41
DNA adducts consist of DNA monoadducts, DNA intrastrand crosslinks, DNA interstrand crosslinks, and DNA-protein crosslinks. If not repaired or mistakenly repaired, DNA adducts may lead to gene mutations and initiate carcinogenesis. Two insecticides, chlorpyrifos and cypermethrin, were studied for their potential of forming DNA monoadducts, DNA interstrand crosslinks, and DNA-protein crosslinks in primary mouse hepatocytes via the assays of bioluminescence, ethidium bromide fluorescence, and K+-SDS precipitation. DNA interstrand crosslinks were also measured on calf thymus DNA. It was shown that chlorpyrifos could not form DNA adducts. Cypermethrin formed DNA monoadducts and DNA interstrand crosslinks in hepatocytes. However, cypermethrin didn't form DNA interstrand crosslinks on calf thymus DNA and in hepatocytes treated with SKF-525A, a cytochrome P450 inhibitor, which suggests that active metabolites of cypermethrin instead of cypermethrin itself caused DNA interstrand crosslinks and that cytochrome P450 may be involved in the activation of cypermethrin.  相似文献   

9.
Trans-diamminedichloroplatinum(II) (trans-DDP) forms with DNA at 37 degrees C, more numerous interstrand cross-links than cis-DDP in the isolated DNA and DNA in the chromatin complex. An increase in the temperature to 42.5 degrees C had no effect on the interstrand cross-links of DND-Pt-DNA formed by the two isomers, both in DNA and in chromatin.  相似文献   

10.
A Rahmouni  M Leng 《Biochemistry》1987,26(23):7229-7234
In the reaction of cis-diamminedichloroplatinum(II) (cis-DDP) with double-helical (dC-dG)4.(dC-dG)4 or (dC-dG)5.(dC-dG)5, intrastrand and interstrand cross-links between two guanine residues are formed. This is shown by gel electrophoresis in denaturing conditions of the reaction products and by high-performance liquid chromatography (HPLC) analysis of the products digested with nuclease P1. In the reaction of cis-DDP and poly(dG-dC).poly(dG-dC), at relatively low levels of platination, it is mainly interstrand cross-links between two guanine residues that are formed. This is shown by HPLC analysis of the nuclease P1 digest and by gel electrophoresis in denaturing and nondenaturing conditions of the platinated polymer after cleavage with the restriction enzyme HhaI. Moreover, the antibodies to platinated poly(dG-dC).poly(dG-dC) cross-react with the interstrand cross-linked (dC-dG)4 or (dC-dG)5 but not with the intrastrand cross-linked (dC-dG)4 or (dC-dG)5. These antibodies cross-react with platinated natural DNA. The amount of interstrand cross-links deduced from radioimmunoassays (0.5% of the total bound platinum) is lower than that (2%) deduced by gel electrophoresis in denaturing conditions of a platinated DNA restriction fragment. By gel electrophoresis, it is also shown that in vitro the isomer trans-DDP is more efficient in forming interstrand cross-links than cis-DDP.  相似文献   

11.
S H Chou  P Flynn  B Reid 《Biochemistry》1989,28(6):2422-2435
Ten-micromole solid-phase RNA synthesis has been successfully performed on an automated nucleic acid synthesizer with coupling efficiencies up to 99%, using the tert-butyldimethylsilyl group to protect the 2'-hydroxyl. The tert-butyldimethylsilyl group was easily removed by tetrabutylammonium fluoride under conditions in which virtually no 2'- to 3'-isomerization was found to occur. By use of this approach, the self-complementary RNA dodecamers r(CGCGAAUUCGCG) and r(CGCGUAUACGCG) were synthesized on an automated nucleic acid synthesizer, purified by TLC, and studied by high-resolution NMR. Imino protons were assigned from one-dimensional nuclear Overhauser effects. The nonexchangeable base, H1', and H2' protons were assigned by the sequential NOESY connectivity method. The NOE data from these two oligomers were analyzed qualitatively and compared to the ideal A- and B-type helix models of Arnott et al. (1972a,b). The internucleotide H6/H8 NOEs to the preceding H1' in r(CGCGUAUACGCG) were found to be sequence-dependent and probably reflect the roll angles between adjacent bases. The internucleotide H6/H8 to H2' NOEs of these oligomers correspond very well to an A-type conformation, but the interstrand adenine H2 NOEs to the following H1' were much stronger than those predicted from the fiber model. These srong interstrand NOEs can be rationalized by base pair slide to favor more interstrand base overlap, as predicted by Callidine and Drew (1984).  相似文献   

12.
The interaction of Cu(II) ions with native and denatured DNA as a function of ionic strength of the solution was studied by the equilibrium dialysis method. Graphical analysis of binding isotherms confirmed the occurrence of interstrand and intrastrand binding of Cu(II) with DNA and made possible determination of the respective binding constants. To facilitate interpretation of the data, a new molecular model of Cu(II)-DNA binding has been proposed, assuming interstrand intercalation of one Cu(II) ion between two GC pairs both in the successive even and odd groups of GC pairs, and interstrand binding of Cu(II) to the isolated GC pairs, with the exception of T-C-T and T-G-T sequences. In agreement with this model, the DNA-Cu(II) complex is most stable under the equilibrium with free Cu(II) ions at 4 degrees C, pH 6 when the molar ratio of GC pairs to Cu(II) ions bound interstrandially attains GC/Cuinter = 2 +/- 0.1.  相似文献   

13.
The study of the interactions of double-stranded (ds) DNA with the dirhodium carboxylate compounds Rh(2)(O(2)CCH(3))(4)(H(2)O)(2) (Rh1), [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2) (Rh2), and Rh(2)(O(2)CCF(3))(4) (Rh3) supports the presence of covalently linked DNA adducts, including stable DNA interstrand cross-links. The present biochemical study refutes earlier claims that no reaction between dirhodium compounds and dsDNA occurs. The reversal behavior of these interstrand cross-links in 5 M urea at 95 degrees C (for different heating times) implies the presence of various coordination modes involving ax/ax, ax/eq, and eq/eq DNA interactions with the dirhodium core. The reaction rates of the dirhodium compounds with dsDNA were determined spectroscopically and are in the order Rh1 < Rh2 < Rh3. This difference in behavior of the three dirhodium compounds correlates with the lability of the leaving groups and corresponds to the extent of interstrand cross-link formation by these compounds on a 123 bp DNA fragment, as observed by denaturing polyacrylamide gel electrophoresis (dPAGE). Since all three dirhodium compounds form covalent Rh-DNA adducts, including interstrand cross-links, it is important that DNA be considered a potential target for biological activity of these dirhodium carboxylate compounds.  相似文献   

14.
Fanconi anemia (cross)linked to DNA repair   总被引:2,自引:0,他引:2  
Niedernhofer LJ  Lalai AS  Hoeijmakers JH 《Cell》2005,123(7):1191-1198
Fanconi anemia is characterized by hypersensitivity to DNA interstrand crosslinks (ICLs) and susceptibility to tumor formation. Despite the identification of numerous Fanconi anemia (FANC) genes, the mechanism by which proteins encoded by these genes protect a cell from DNA interstrand crosslinks remains unclear. The recent discovery of two DNA helicases that, when defective, cause Fanconi anemia tips the balance in favor of the direct involvement of the FANC proteins in DNA repair and the bypass of DNA lesions.  相似文献   

15.
A matrix treatment of the formation of intramolecular anti-parallel β-sheets from a statistical coil has been extended to incorporate interstrand loops of arbitrary size. The behavior of the model is compared with a simpler version in which all pairs of contiguous strands were connected by β-bends. When large interstrand loops are allowed, there are many more types of sheets than is the case when all contiguous strands must be connected by tight or β-bends. For this reason, the larger interstrand loops make it easier to introduce the initial sheet into a statistical coil, and the sheet content is enhanced in the early stages of stages of sheet formation (i.e., at small values of the growth parameter t). As the transition continues (i.e., as t increases), a stage will be reached where occupancy of the statistical coil state is negligible because nearly all residues are in sheets or interstrand loops. Now, additional sheet formation can be accomplished only at the expense of residues in the interior of interstrand loops. For this reason, the larger interstrand loops make it more difficult to complete the final stages of sheet formation. These effects are especially dramatic in the formation of cross-β-sheets.  相似文献   

16.
A novel sequence-selective extended PBD dimer 4 has been synthesized that binds with high affinity to an interstrand cross-linking site spanning 11 DNA base pairs. Despite its molecular weight (984.07) and length, the molecule has significant DNA interstrand cross-linking potency (approximately 100-fold greater than the clinically used agent melphalan) and sub-micromolar cytotoxicity in a number of tumour cell lines, suggesting that it readily penetrates cellular and nuclear membranes to reach its DNA target.  相似文献   

17.
A method for the determination of DNA monoadducts capable of forming interstrand crosslinks in mammalian cells is described. Such monoadducts were produced by brief treatment of cells with cis-diamminedichloro-Pt(II) (cis-DDP), 1-(2-chloroethyl)-1-nitrosourea (ClEtNU), L-phenylalanine mustard (L-PAM), or diaziridinylbenzoquinone (AZQ). The method is an alkaline elution procedure in which the DNA from lysed cells is incubated on polycarbonate filters at pH 10 and 37 degrees C. During this incubation, the progressive formation of interstrand crosslinking was observed in drug-treated cells. In the case of ClEtNU and AZQ, DNA strand breaks also formed, due to the presence of labile lesions in the DNA. This made quantitation of interstrand crosslinks difficult for these drugs. For cis-DDP and L-PAM, however, there was no significant production of strand breaks and the assay for interstrand crosslinks was quantifiable.  相似文献   

18.
A series of 1,2-bis(sulfonyl)hydrazines with the capacity to function as alkylating agents have been evaluated for their toxicity towards Mer- HT29 and Mer- BE cells, and for their ability to produce DNA damage expressed as single-strand breaks and DNA interstrand cross-links. Compounds of this class with methylating potential showed a marked difference in their capacity to inhibit the growth of Mer- and Mer+ cells, being considerably more toxic to BE Mer- cells. Dose-dependent DNA single-strand breaks were induced by these agents, with the quantity of breaks produced in Mer- and Mer+ cells being essentially the same. Maintenance of these lesions did not appear to explain the differential in toxicity to BE and HT29 cells. A chloroethylating compound of this class was also more toxic to Mer- BE cells than to Mer+ HT29 cells, but the differential toxicity was considerably less than that of the methylating agents of the series. The chloroethylating agent did not produce measurable single-strand breaks of the DNA of treated cells, but caused more DNA interstrand cross-links in Mer- cells than in Mer+ cells. Thus, DNA interstrand cross-links may be at least in part responsible for the cell kill produced by this agent. The findings suggest that methylating and chloroethylating derivatives of the 1,2-bis(sulfonyl)hydrazine family have different biochemical determinants of their cytodestructive actions.  相似文献   

19.
Millard JT  Wilkes EE 《Biochemistry》2000,39(51):16046-16055
Interstrand cross-linking studies with the antitumor drug cis-diamminedichloroplatinum(II) and its clinically inactive isomer, trans-diamminedichloroplatinum(II), were performed on a fragment of the 5S rRNA gene of Xenopus borealis in the free and nucleosomal state. 5S nucleosomes were formed via histone octamer exchange from chicken erythrocyte core particles. Native polyacrylamide gel electrophoresis was used to probe the ability of platinated DNA to reconstitute into core particles. Both isomers negatively impacted reconstitution when histones were present during incubation with the drug. When histones were not present during the drug treatment, platinated DNA was successfully reconstituted into core particles. These results suggest that platination of histones impedes reconstitution of free DNA. However, already-formed core particles were not disrupted upon platination. Sites of interstrand cross-linking were probed through denaturing polyacrylamide gel electrophoresis and quantitative phosphorimagery. We found both site-specific enhancement and depression of cis-diamminedichloroplatinum(II) cross-linking in the nucleosomal samples relative to free DNA at both drug concentrations that were tested (0.01 and 0.0025 mM). trans-Diamminedichloroplatinum(II) exhibited no detectable differences in the interstrand cross-linking of free and nucleosomal samples.  相似文献   

20.
Interaction of novel bis(platinum) complexes with DNA.   总被引:3,自引:2,他引:1       下载免费PDF全文
Bis(platinum) complexes [[cis-PtCl2(NH3)]2H2N(CH2)nNH2] are a novel series of potential anticancer agents in which two cis-diamine(platinum) groups are linked by an alkyldiamine of variable length. These complexes are potentially tetrafunctional, a unique feature in comparison with known anticancer agents. Studies of DNA interactions of bis(platinum) complexes in comparison with cisplatin demonstrate significant differences. Investigations of interstrand crosslink formation in which crosslinking of a short DNA fragment is detected by gel electrophoresis under denaturing conditions demonstrate that interstrand crosslinks are 250 fold more frequent among bis(platinum) adducts than among cisplatin-derived adducts under the conditions examined. These investigations indicate that bis(platinum) adducts contain a high frequency of structurally novel interstrand crosslinks formed through binding of the two platinum centers to opposite DNA strands. Unlike cisplatin, bis(platinum) complex binding does not unwind supercoiled DNA. Studies with the E. coli UvrABC nuclease complex demonstrate that both linear and supercoiled DNA containing bis(platinum) adducts are subject to incision by the repair enzyme complex. Initial studies using UvrABC nuclease as a probe to define the base and sequence specificity for bis(platinum) complex binding suggest that the specificity of the bis(platinum)s is similar, but not identical, to that of cisplatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号