首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 577 毫秒
1.
For admixture mapping studies in Mexican Americans (MAM), we define a genomewide single-nucleotide-polymorphism (SNP) panel that can distinguish between chromosomal segments of Amerindian (AMI) or European (EUR) ancestry. These studies used genotypes for >400,000 SNPs, defined in EUR and both Pima and Mayan AMI, to define a set of ancestry-informative markers (AIMs). The use of two AMI populations was necessary to remove a subset of SNPs that distinguished genotypes of only one AMI subgroup from EUR genotypes. The AIMs set contained 8,144 SNPs separated by a minimum of 50 kb with only three intermarker intervals >1 Mb and had EUR/AMI FST values >0.30 (mean FST = 0.48) and Mayan/Pima FST values <0.05 (mean FST < 0.01). Analysis of a subset of these SNP AIMs suggested that this panel may also distinguish ancestry between EUR and other disparate AMI groups, including Quechuan from South America. We show, using realistic simulation parameters that are based on our analyses of MAM genotyping results, that this panel of SNP AIMs provides good power for detecting disease-associated chromosomal segments for genes with modest ethnicity risk ratios. A reduced set of 5,287 SNP AIMs captured almost the same admixture mapping information, but smaller SNP sets showed substantial drop-off in admixture mapping information and power. The results will enable studies of type 2 diabetes, rheumatoid arthritis, and other diseases among which epidemiological studies suggest differences in the distribution of ancestry-associated susceptibility.  相似文献   

2.
Mexican Americans are a numerous and fast growing ethnic population in the United States. Yet little is known about their genetic structure. Since they are a hybrid, it is of interest to identify their parental populations and to estimate the relative contributions of these groups. This information is relevant to historical, biomedical, and evolutionary concerns. New genetic typings on 730 Arizona Mexican Americans for the HLA-A, HLA-B, ABO, Rh, MNSs, Duffy, Kidd, and Kell loci are presented here and they are used to estimate ancestral contributions. We considered both a dihybrid model with Amerindians and Spaniards as proposed ancestors, and a trihybrid model with Amerindians, Spaniards, and Africans as proposed ancestors. A modified weighted least squares method that allows for linkage disequilibrium was used to estimate ancestral contributions for each model. The following admixture estimates were obtained: Amerindian, 0.29 +/- 0.04; Spaniard, 0.68 +/- 0.05; and African, 0.03 +/- 0.02. The interpretation of these results with respect to Amerindian and Spanish ancestry is straightforward. African ancestry is strongly supported by the presence of a marker of African descent, Fy, despite the fact that the standard error of the estimate is as large as the estimated admixture proportion. An evaluation of the sensitivity of these results to a number of variables is presented: 1) our choices of ancestral allele frequencies, 2) the possibility of selection at HLA and the blood groups, and 3) genetic drift in Mexican Americans.  相似文献   

3.
We and others have identified several hundred ancestry informative markers (AIMs) with large allele frequency differences between different major ancestral groups. For this study, a panel of 199 widely distributed AIMs was used to examine a diverse set of 796 DNA samples including self-identified European Americans, West Africans, East Asians, Amerindians, African Americans, Mexicans, Mexican Americans, Puerto Ricans and South Asians. Analysis using a Bayesian clustering algorithm (STRUCTURE) showed grouping of individuals with similar ethnic identity without any identifier other than the AIMs genotyping and showed admixture proportions that clearly distinguished different individuals of mixed ancestry. Additional analyses showed that, for the majority of samples, the predicted ethnic identity corresponded with the self-identified ethnicity at high probability (P > 0.99). Overall, the study demonstrates that AIMs can provide a useful adjunct to forensic medicine, pharmacogenomics and disease studies in which major ancestry or ethnic affiliation might be linked to specific outcomes.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

4.
Mapping by admixture linkage disequilibrium (MALD) is a potentially powerful technique for the mapping of complex genetic diseases. The practical requirements of this method include (a) a set of markers spanning the genome that have large allele-frequency differences between the parental ethnicities contributing to the admixed population and (b) an understanding of the extent of admixture in the study population. To this end, a DNA-pooling technique was used to screen microsatellite and diallelic insertion/deletion markers for allele-frequency differences between putative representatives of the parental populations of the admixed Mexican American (MA) and African American (AA) populations. Markers with promising pooled differences were then confirmed by individual genotyping in both the parental and admixed populations. For the MA population, screening of >600 markers identified 151 ethnic-difference markers (EDMs) with delta>0.30 (where delta is the absolute value of each allele-frequency difference between two populations, summed over all marker alleles and divided by two) that are likely to be useful for MALD analysis. For the AA population, analysis of >400 markers identified 97 EDMs. In addition, individual genotyping of these markers in Pima Amerindians, Yavapai Amerindians, European American (EA) individuals, Africans from Zimbabwe, MA individuals, and AA individuals, as well as comparison to the CEPH genotyping set, suggests that the differences between subpopulations of an ethnicity are small for many markers with large interethnic differences. Estimates of admixture that are based on individual genotyping of these markers are consistent with a 60% EA:40% Amerindian contribution to MA populations and with a 20% EA:80% African contribution to AA populations. Taken together, these data suggest that EDMs with large interpopulation and small intrapopulation differences can be readily identified for MALD studies in both AA and MA populations.  相似文献   

5.
Skin pigmentation,biogeographical ancestry and admixture mapping   总被引:23,自引:0,他引:23  
Ancestry informative markers (AIMs) are genetic loci showing alleles with large frequency differences between populations. AIMs can be used to estimate biogeographical ancestry at the level of the population, subgroup (e.g. cases and controls) and individual. Ancestry estimates at both the subgroup and individual level can be directly instructive regarding the genetics of the phenotypes that differ qualitatively or in frequency between populations. These estimates can provide a compelling foundation for the use of admixture mapping (AM) methods to identify the genes underlying these traits. We present details of a panel of 34 AIMs and demonstrate how such studies can proceed, by using skin pigmentation as a model phenotype. We have genotyped these markers in two population samples with primarily African ancestry, viz. African Americans from Washington D.C. and an African Caribbean sample from Britain, and in a sample of European Americans from Pennsylvania. In the two African population samples, we observed significant correlations between estimates of individual ancestry and skin pigmentation as measured by reflectometry (R(2)=0.21, P<0.0001 for the African-American sample and R(2)=0.16, P<0.0001 for the British African-Caribbean sample). These correlations confirm the validity of the ancestry estimates and also indicate the high level of population structure related to admixture, a level that characterizes these populations and that is detectable by using other tests to identify genetic structure. We have also applied two methods of admixture mapping to test for the effects of three candidate genes (TYR, OCA2, MC1R) on pigmentation. We show that TYR and OCA2 have measurable effects on skin pigmentation differences between the west African and west European parental populations. This work indicates that it is possible to estimate the individual ancestry of a person based on DNA analysis with a reasonable number of well-defined genetic markers. The implications and applications of ancestry estimates in biomedical research are discussed.  相似文献   

6.
Admixture occurs when individuals from parental populations that have been isolated for hundreds of generations form a new hybrid population. Currently, interest in measuring biogeographic ancestry has spread from anthropology to forensic sciences, direct-to-consumers personal genomics, and civil rights issues of minorities, and it is critical for genetic epidemiology studies of admixed populations. Markers with highly differentiated frequencies among human populations are informative of ancestry and are called ancestry informative markers (AIMs). For tri-hybrid Latin American populations, ancestry information is required for Africans, Europeans and Native Americans. We developed two multiplex panels of AIMs (for 14 SNPs) to be genotyped by two mini-sequencing reactions, suitable for investigators of medium-small laboratories to estimate admixture of Latin American populations. We tested the performance of these AIMs by comparing results obtained with our 14 AIMs with those obtained using 108 AIMs genotyped in the same individuals, for which DNA samples is available for other investigators. We emphasize that this type of comparison should be made when new admixture/population structure panels are developed. At the population level, our 14 AIMs were useful to estimate European admixture, though they overestimated African admixture and underestimated Native American admixture. Combined with more AIMs, our panel could be used to infer individual admixture. We used our panel to infer the pattern of admixture in two urban populations (Montes Claros and Manhua?u) of the State of Minas Gerais (southeastern Brazil), obtaining a snapshot of their genetic structure in the context of their demographic history.  相似文献   

7.
Admixture mapping (AM) is a promising method for the identification of genetic risk factors for complex traits and diseases showing prevalence differences among populations. Efficient application of this method requires the use of a genomewide panel of ancestry-informative markers (AIMs) to infer the population of origin of chromosomal regions in admixed individuals. Genomewide AM panels with markers showing high frequency differences between West African and European populations are already available for disease-gene discovery in African Americans. However, no such a map is yet available for Hispanic/Latino populations, which are the result of two-way admixture between Native American and European populations or of three-way admixture of Native American, European, and West African populations. Here, we report a genomewide AM panel with 2,120 AIMs showing high frequency differences between Native American and European populations. The average intermarker genetic distance is ~1.7 cM. The panel was identified by genotyping, with the Affymetrix GeneChip Human Mapping 500K array, a population sample with European ancestry, a Mesoamerican sample comprising Maya and Nahua from Mexico, and a South American sample comprising Aymara/Quechua from Bolivia and Quechua from Peru. The main criteria for marker selection were both high information content for Native American/European ancestry (measured as the standardized variance of the allele frequencies, also known as "f value") and small frequency differences between the Mesoamerican and South American samples. This genomewide AM panel will make it possible to apply AM approaches in many admixed populations throughout the Americas.  相似文献   

8.
Markers informative for ancestry are necessary for admixture mapping and improving case-control association analyses. In particular, African Americans are an admixed population for which genetic studies require accurately evaluating admixture. This will require markers that can be used in African Americans to determine if a given genomic region is of European or African ancestry. This report shows that, despite studies indicating high intra-African sequence variation, markers with large inter-ethnic differences have only small variations in allele distribution among divergent African populations and should be valuable for evaluating admixture in complex disease genetic studies.  相似文献   

9.
Y-linked markers are suitable loci to analyze genetic diversity of human populations, offering knowledge of medical, forensic, and anthropological interest. In a population sample of 206 Mestizo males from western Mexico, we analyzed two binary loci (M3 and YAP) and six Y-STRs, adding to the analysis data of Mexican Mestizos and Amerindians, and relevant worldwide populations. The paternal ancestry estimated in western Mexican-Mestizos was mainly European (60-64%), followed by Amerindian (25-21%), and African ( approximately 15%). Significant genetic heterogeneity was established between Mestizos from western (Jalisco State) and northern Mexico (Chihuahua State) compared with Mexicans from the center of the Mexican Republic (Mexico City), this attributable to higher European ancestry in western and northern than in central and southeast populations, where higher Amerindian ancestry was inferred. This genetic structure has important implications for medical and forensic purposes. Two different Pre-Hispanic evolutionary processes were evident. In Mesoamerican region, populations presented higher migration rate (N(m) = 24.76), promoting genetic homogeneity. Conversely, isolated groups from the mountains and canyons of the Western and Northern Sierra Madre (Huichols and Tarahumaras, respectively) presented a lower migration rate (N(m) = 10.27) and stronger genetic differentiation processes (founder effect and/or genetic drift), constituting a Pre-Hispanic population substructure. Additionally, Tarahumaras presented a higher frequency of Y-chromosomes without Q3 that was explained by paternal European admixture (15%) and, more interestingly, by a distinctive Native-American ancestry. In Purepechas, a special admixture process involving preferential integration of non-Purepecha women in their communities could explain contrary genetic evidences (autosomal vs. Y-chromosome) for this tribe.  相似文献   

10.
Argentine population genetic structure was examined using a set of 78 ancestry informative markers (AIMs) to assess the contributions of European, Amerindian, and African ancestry in 94 individuals members of this population. Using the Bayesian clustering algorithm STRUCTURE, the mean European contribution was 78%, the Amerindian contribution was 19.4%, and the African contribution was 2.5%. Similar results were found using weighted least mean square method: European, 80.2%; Amerindian, 18.1%; and African, 1.7%. Consistent with previous studies the current results showed very few individuals (four of 94) with greater than 10% African admixture. Notably, when individual admixture was examined, the Amerindian and European admixture showed a very large variance and individual Amerindian contribution ranged from 1.5 to 84.5% in the 94 individual Argentine subjects. These results indicate that admixture must be considered when clinical epidemiology or case control genetic analyses are studied in this population. Moreover, the current study provides a set of informative SNPs that can be used to ascertain or control for this potentially hidden stratification. In addition, the large variance in admixture proportions in individual Argentine subjects shown by this study suggests that this population is appropriate for future admixture mapping studies.  相似文献   

11.
We studied 156 individuals of Native American descent from the city of Tlapa in the state of Guerrero in western Mexico. Most individuals' ethnicity was either Nahua, Mixtec, or Tlapanec, but self-identified Mestizos and individuals of mixed ethnicities were also included in the sample. We typed 24 autosomal, one Y-chromosome, and four mitochondrial ancestry-informative markers (AIMs) to estimate group and individual admixture proportions, and determine whether the admixture process involved directional gene flow between parental groups. When genetically defined (GD) Mestizos were excluded from the analysis, Native American ancestry represented approximately 98% of the population's gene pool, while European and West African ancestry represented approximately 1% each. Maternally inherited markers also showed an exceptionally high Native American contribution (98.5%), as did the paternally inherited marker, DYS199 (90.7%). We did not detect genetic structure in this population using these AIMs, which appears consistent with the homogeneity of the sample in terms of admixture proportions. The addition of GD Mestizos to the sample did not produce a considerable change in admixture estimates, but it had a major effect on population structure. These results show that the population of Tlapa in Guerrero, Mexico, has experienced little admixture with Europeans and/or West Africans. They also show that the impact of a small number of admixed individuals on an otherwise homogeneous population might have profound implications on subsequent ancestry/phenotype analysis and mapping strategies. We suggest that heterogeneity is a major characteristic of Mexican populations and, as a consequence, should not be disregarded when designing epidemiological studies of Mexican and Mexican American populations.  相似文献   

12.
Several polymorphisms in the CYP1A1 locus have been identified and their genotypes appear to exhibit population frequencies that depend on ethnicity. We studied two CYP1A1 polymorphic sites (position 4889 and 6235) in a group of 212 unrelated healthy individuals belonging to three different Mexican populations (106 Mexican Mestizos, 52 Teenek and 54 Mayos). Comparison among Mexican populations showed increased frequency of the *Ile allele (A on position 4889) in Mexican Mestizos when compared to Amerindians (p < 0.05). The analysis of position 6235 showed increased frequencies of *m2 (C in this position) allele in Teenek when compared to Mestizos and Mayos (p < 0.05) and of *m2/*m2 genotype when compared to Mestizos (p < 0.05). Amerindian populations (from Mexico and South America) presented the lowest frequencies of *Ile (position 4889) and *m1 (position 6235) alleles, however these frequencies vary according to the ethnic group studied. Mexican Amerindian groups together with other South Amerindian populations showed the highest frequencies for *Val at position 4889 and the *m2 allele at position 6235. The present study corroborates the high frequencies of*Val and *m2 alleles in the Amerindian populations and detects some differences between Mexican populations that correlate with linguistic differences. Our data could be helpful in understanding the distribution of these polymorphisms and in clarifying their roles as genetic and evolution markers in Amerindian populations.  相似文献   

13.
In the United States, asthma prevalence and mortality are the highest among Puerto Ricans and the lowest among Mexicans. Case-control association studies are a powerful strategy for identifying genes of modest effect in complex diseases. However, studies of complex disorders in admixed populations such as Latinos may be confounded by population stratification. We used ancestry informative markers (AIMs) to identify and correct for population stratification among Mexican and Puerto Rican subjects participating in case-control studies of asthma. Three hundred and sixty-two subjects with asthma (Mexican: 181, Puerto Rican: 181) and 359 ethnically matched controls (Mexican: 181, Puerto Rican: 178) were genotyped for 44 AIMs. We observed a greater than expected degree of association between pairs of AIMs on different chromosomes in Mexicans (P < 0.00001) and Puerto Ricans (P < 0.00002) providing evidence for population substructure and/or recent admixture. To assess the effect of population stratification on association studies of asthma, we measured differences in genetic background of cases and controls by comparing allele frequencies of the 44 AIMs. Among Puerto Ricans but not in Mexicans, we observed a significant overall difference in allele frequencies between cases and controls (P = 0.0002); of 44 AIMs tested, 8 (18%) were significantly associated with asthma. However, after adjustment for individual ancestry, only two of these markers remained significantly associated with the disease. Our findings suggest that empirical assessment of the effects of stratification is critical to appropriately interpret the results of case-control studies in admixed populations.  相似文献   

14.
Adipocytokines are a subset of cytokines produced by adipose tissue and are associated with risk of type II diabetes and atherosclerosis. Levels of adipocytokines differ between Black and White Americans, even after adjustment for differences in adiposity, diseases associated with adipocytokines including type 2 diabetes and cardiovascular disease, and general socioeconomic status indicators such as income. We used a series of ancestry informative markers to estimate genetic ancestry in a population-based study of older Black Americans, and examined the association between genetic ancestry and adipocytokines and soluble receptors to help determine which of these may be most amenable to admixture mapping. We typed 35 ancestry informative markers in 1,241 self-reported Black Americans with available DNA from the Health, Aging, and Body Composition (Health ABC) study with available DNA and used a maximum likelihood approach to estimate percent European ancestry. We used linear regression models to determine the association between these adipocytokines and percent ancestry, and staged models to examine whether adiposity or other measures affected the associations of genetic ancestry and adipocytokines. Mean European ancestry was 22.3 ± 15.9%. In multivariate adjusted models, the strongest associations observed were between higher European ancestry and interleukin-6 soluble receptor (IL-6 SR), C-reactive protein (CRP), and adiponectin levels, with interleukin-2 soluble receptor (IL-2 SR) and soluble tumor necrosis factor receptor II (TNF-α SR II) also showing more modest but significant associations. The association with adiponectin became stronger after adjustment for adiposity. These novel findings suggest that admixture mapping may identify genetic factors influencing the levels of IL-6 SR, CRP, IL-2 SR, and adiponectin. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
The incidence of chronic kidney disease varies by ethnic group in the USA, with African Americans displaying a two-fold higher rate than European Americans. One of the two defining variables underlying staging of chronic kidney disease is the glomerular filtration rate. Meta-analysis in individuals of European ancestry has identified 23 genetic loci associated with the estimated glomerular filtration rate (eGFR). We conducted a follow-up study of these 23 genetic loci using a population-based sample of 1,018 unrelated admixed African Americans. We included in our follow-up study two variants in APOL1 associated with end-stage kidney disease discovered by admixture mapping in admixed African Americans. To address confounding due to admixture, we estimated local ancestry at each marker and global ancestry. We performed regression analysis stratified by local ancestry and combined the resulting regression estimates across ancestry strata using an inverse variance-weighted fixed effects model. We found that 11 of the 24 loci were significantly associated with eGFR in our sample. The effect size estimates were not significantly different between the subgroups of individuals with two copies of African ancestry vs. two copies of European ancestry for any of the 11 loci. In contrast, allele frequencies were significantly different at 10 of the 11 loci. Collectively, the 11 loci, including four secondary signals revealed by conditional analyses, explained 14.2% of the phenotypic variance in eGFR, in contrast to the 1.4% explained by the 24 loci in individuals of European ancestry. Our findings provide insight into the genetic basis of variation in renal function among admixed African Americans.  相似文献   

16.
As we move forward from the current generation of genome-wide association (GWA) studies, additional cohorts of different ancestries will be studied to increase power, fine map association signals, and generalize association results to additional populations. Knowledge of genetic ancestry as well as population substructure will become increasingly important for GWA studies in populations of unknown ancestry. Here we propose genotyping pooled DNA samples using genome-wide SNP arrays as a viable option to efficiently and inexpensively estimate admixture proportion and identify ancestry informative markers (AIMs) in populations of unknown origin. We constructed DNA pools from African American, Native Hawaiian, Latina, and Jamaican samples and genotyped them using the Affymetrix 6.0 array. Aided by individual genotype data from the African American cohort, we established quality control filters to remove poorly performing SNPs and estimated allele frequencies for the remaining SNPs in each panel. We then applied a regression-based method to estimate the proportion of admixture in each cohort using the allele frequencies estimated from pooling and populations from the International HapMap Consortium as reference panels, and identified AIMs unique to each population. In this study, we demonstrated that genotyping pooled DNA samples yields estimates of admixture proportion that are both consistent with our knowledge of population history and similar to those obtained by genotyping known AIMs. Furthermore, through validation by individual genotyping, we demonstrated that pooling is quite effective for identifying SNPs with large allele frequency differences (i.e., AIMs) and that these AIMs are able to differentiate two closely related populations (HapMap JPT and CHB).  相似文献   

17.
The relationship between ethnicity and biology is of interest to anthropologists, biomedical scientists, and historians in understanding how human groups are constructed. Ethnic self-identification in recently admixed groups such as Hispanics, African Americans, and Native Americans (NA) is likely to be complex due to the heterogeneity in individual admixture proportions and social environments within these groups. This study examines the relationships between self-identified ethnicity, self-estimated admixture proportions, skin pigmentation, and genetic marker estimated admixture proportions. These measures were assessed using questionnaires, skin color measurements, and genotyping of a panel of 76 ancestry informative markers, among 170 Hispanics and NAs from New Mexico, a state known for its complex history of interactions between people of NA and European (EU) ancestry. Results reveal that NAs underestimate their degree of EU admixture, and that Hispanics underestimate their degree of NA admixture. Within Hispanics, genetic-marker estimated admixture is better predicted by forehead skin pigmentation than by self-estimated admixture. We also find that Hispanic individuals self-identified as "half-White, half Hispanic" and "Spanish" have lower levels of NA admixture than those self-identified as "Mexican" and "Mexican American." Such results highlight the interplay between culture and biology in how individuals identify and view themselves, and have implications for how ethnicity and disease risk are assessed in a medical setting.  相似文献   

18.
The angiotensin-converting enzyme gene (ACE) insertion/deletion polymorphism was determined in 211 Mexican healthy individuals belonging to different Mexican ethnic groups (98 Mestizos, 64 Teenek, and 49 Nahuas). ACE polymorphism differed among Mexicans with a high frequency of the D allele and the D/D genotype in Mexican Mestizos. The D/D genotype was absent in Teenek and present in only one Nahua individual (2.0%). When comparisons were made, we observed that Caucasian, African, and Asian populations presented the highest frequencies of the D allele, whereas Amerindian (Teenek and Pima) and Australian Aboriginals showed the highest frequencies of the I allele. The distribution of I/D genotype was heterogeneous in all populations: Australian Aboriginals presented the lowest frequency (4.9%), whereas Nahuas presented the highest (73.4%). The present study shows the frequencies of a polymorphism not analyzed previously in Mexican populations and establishes that this polymorphism distinguishes the Amerindian populations of other groups. On the other hand, since ACE alleles have been associated with genetic susceptibility to developing cardiovascular diseases and hypertension, knowledge of the distribution of these alleles could help to define the true significance of ACE polymorphism as a genetic susceptibility marker in the Amerindian populations.  相似文献   

19.
Following up on our previous study, we conducted a genome-wide analysis of admixture for two Uyghur population samples (HGDP-UG and PanAsia-UG), collected from the northern and southern regions of Xinjiang in China, respectively. Both HGDP-UG and PanAsia-UG showed a substantial admixture of East-Asian (EAS) and European (EUR) ancestries, with an empirical estimation of ancestry contribution of 53:47 (EAS:EUR) and 48:52 for HGDP-UG and PanAsia-UG, respectively. The effective admixture time under a model with a single pulse of admixture was estimated as 110 generations and 129 generations, or admixture events occurred about 2200 and 2580 years ago for HGDP-UG and PanAsia-UG, respectively, assuming an average of 20 yr per generation. Despite Uyghurs' earlier history compared to other admixture populations, admixture mapping, holds promise for this population, because of its large size and its mixture of ancestry from different continents. We screened multiple databases and identified a genome-wide single-nucleotide polymorphism panel that can distinguish EAS and EUR ancestry of chromosomal segments in Uyghurs. The panel contains 8150 ancestry-informative markers (AIMs) showing large frequency differences between EAS and EUR populations (FST > 0.25, mean FST = 0.43) but small frequency differences (7999 AIMs validated) within both populations (FST < 0.05, mean FST < 0.01). We evaluated the effectiveness of this admixture map for localizing disease genes in two Uyghur populations. To our knowledge, our map constitutes the first practical resource for admixture mapping in Uyghurs, and it will enable studies of diseases showing differences in genetic risk between EUR and EAS populations.  相似文献   

20.
A panel of Ancestry Informative Markers (AIMs) was used to identify population substructure and estimate individual and overall interethnic admixture in 294 individuals from seven African-derived communities of the Brazilian Amazon. A panel of 48 biallelic markers, representing the insertion (IN) or the deletion (DEL) of small DNA fragments, was employed for this purpose. Overall interethnic admixture estimates showed high miscegenation with other ethnic groups in all populations (between 46% and 64%). The proportion of ancestral genes varied significantly among individuals of the sample: the contribution of African genes varied between 12% and 75%; of European genes between 10% and 73%; and of Amerindians genes between 8% and 66%. The obtained data reveal a high contribution of Amerindian genes in these communities, unlike in other African-derived communities of the Northeast and the South of Brazil. In addition, the majority of the Amerindian contribution may result from the preferential inclusion of indigenous women in the African descent groups. High heterogeneity of the proportion of interethnic admixture among analyzed individuals was found when the proportion of ancestral genes of each individual of the sample was estimated. This heterogeneity is reflected in the fact that four populations can be considered as substructured and that the global African descent sample is possibly formed by two subpopulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号