首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ascorbate peroxidase. A prominent membrane protein in oilseed glyoxysomes.   总被引:16,自引:3,他引:13  
The glyoxysomes of growing oilseed seedlings produce H2O2, a reactive oxygen species, during the beta-oxidation of lipids stored in the cotyledons. An expression library of dark-grown cotton (Gossypium hirsutm L.) cotyledons was screened with antibodies that recognized a 31-kD glyoxysomal membrane polypeptide. A full-length cDNA clone (1258 bp) was isolated that encodes a 32-kD subunit of ascorbate peroxidase (APX) with a single, putative membrane-spanning region near the C-terminal end of the polypeptide. Internal amino acid sequence analysis of the cotton 31-kD polypeptide verified that this clone encoded this protein. This enzyme, designated gmAPX, was immunocytochemically and enzymatically localized to the glyoxysomal membrane in cotton cotyledons. The activity of monodehydroascorbate reductase, a protein that reduces monodehydroascorbate to ascorbate with NADH, also was detected in these membranes. The co-localization of gmAPX and monodehydroascorbate reductase within the glyoxysomal membrane likely reflects an essential pathway for scavenging reactive oxygen species and also provides a mechanism to regenerate NAD+ for the continued operation of the glyoxylate cycle and beta-oxidation of fatty acids. Immunological cross-reactivity of 30- to 32-kD proteins in glyoxysomal membranes of cucumber, sunflower, castor bean, and cotton indicate that gmAPX is common among oilseed species.  相似文献   

2.
Type IX collagen has recently been shown to contain glycosaminoglycan chain(s) and furthermore to be immunologically identical with proteoglycan Lt (Vaughan, L., Winterhalter, K. H., and Bruckner, P. (1985) J. Biol. Chem. 260, 4758-4763). Here we demonstrate that the chondroitin sulfate carrying 115-kDa polypeptide of type IX collagen corresponds to the alpha 2(IX) chain. In addition the 84- and 68-kDa polypeptides were identified as the alpha 1(IX) and the alpha 3(IX) chains, respectively. This conclusion is based on a comparison of the tryptic fingerprints of the 84-, 115-, and 68-kDa chains of type IX collagen on high performance liquid chromatography with the similarly treated C2, C3, and C5 chains of the peptic fragment HMW. In addition, we provide evidence that both the C3 and C4 components of HMW are derived from the alpha 2(IX) chain.  相似文献   

3.
T M Finn  Z Li    E Kocsis 《Journal of bacteriology》1995,177(3):805-809
Bordetella pertussis 18323 produces a bvg-regulated 39.1-kDa porin-like protein, OmpQ. OmpQ had 61% similarity to the major porin of B. pertussis and contains conserved regions common to both the neisserial and enteric porin families. The results of Southern blot analysis indicate that strains of Bordetella parapertussis and Bordetella bronchiseptica but not Bordetella avium contain this gene.  相似文献   

4.
5.
Peroxisomes, glyoxysomes and glycosomes are related organelles found in different organisms. The morphology and enzymic content of the different members of this organelle family differ considerably, and may also be highly dependent on the cell's environmental conditions or life cycle. However, all peroxisome-like organelles have in common a number of characteristic enzymes or enzyme systems, notably enzymes dealing with reactive oxygen species. All organelles of the family follow essentially the same route of biogenesis, but with species-specific differences. Sets of proteins called peroxins are involved in different aspects of the formation and proliferation of peroxisomes such as import of proteins in the organellar matrix, insertion of proteins in the membrane, etc. In different eukaryotic lineages these functions are carried out by often – but not always – homologous yet poorly conserved peroxins. The process of biogenesis and the nature of the proteins involved suggest that all members of the peroxisome family evolved from a single organelle in an ancestral eukaryotic cell. This original peroxisome was possibly derived from a cellular membrane system such as the endoplasmic reticulum. Most of the organism-specific functions of the extant organelles have been acquired later in evolution.  相似文献   

6.
Peroxisomes, glyoxysomes and glycosomes are related organelles found in different organisms. The morphology and enzymic content of the different members of this organelle family differ considerably, and may also be highly dependent on the cell's environmental conditions or life cycle. However, all peroxisome-like organelles have in common a number of characteristic enzymes or enzyme systems, notably enzymes dealing with reactive oxygen species. All organelles of the family follow essentially the same route of biogenesis, but with species-specific differences. Sets of proteins called peroxins are involved in different aspects of the formation and proliferation of peroxisomes such as import of proteins in the organellar matrix, insertion of proteins in the membrane, etc. In different eukaryotic lineages these functions are carried out by often--but not always--homologous yet poorly conserved peroxins. The process of biogenesis and the nature of the proteins involved suggest that all members of the peroxisome family evolved from a single organelle in an ancestral eukaryotic cell. This original peroxisome was possibly derived from a cellular membrane system such as the endoplasmic reticulum. Most of the organism-specific functions of the extant organelles have been acquired later in evolution.  相似文献   

7.
The dramatic expansion of nanotechnology applications, particularly the advent of nanomaterials and nanoparticles (NPs) into the consumer economy, have led to heightened awareness of their potential health risks. This study examines the impact of several NPs upon membrane-induced aggregation and bilayer interactions of the human Islet amyloid polypeptide (hIAPP). We report that several NPs – polymeric NPs, TiO2 NPs, and Au NPs displaying coating layers exhibiting different electrostatic charges - did not significantly interfere with the fibrillation process and fibril morphology of hIAPP, both in buffer or in biomimetic DMPC:DMPG vesicle solutions. Spectroscopic and microscopic analyses suggest, in fact, that the NPs promoted membrane-induced fibrillation. Importantly, we find that all the NPs examined, regardless of composition or surface properties, gave rise to more pronounced, synergistic bilayer interactions when co-incubated with hIAPP. NP-enhanced bilayer interactions of hIAPP might point to possible toxicity and pathogenicity risks of amyloidogenic peptides in the presence of NPs.  相似文献   

8.
Islet amyloid polypeptide (IAPP) is a 37 residue intrinsically disordered protein whose aggregation is associated with Type II diabetes. Like most amyloids, it appears that the intermediate aggregates (“oligomers”) of IAPP are more toxic than the mature fibrils, and interaction with the cell membrane is likely to be an integral component of the toxicity. Here we probe the membrane affinity and the conformation of the peptide as a function of its aggregation state. We find that the affinity of the peptide for artificial lipid bilayers is more than 15 times higher in the small oligomeric state (hydrodynamic radius ~ 1.6 nm) compared to the monomeric state (hydrodynamic radius ~ 0.7 nm). Binding with RIN-m5F cell membranes also shows qualitatively similar behavior. The monomeric state, as determined by Forster Resonance Energy Transfer, has a much larger end to end distance than the oligomeric state, suggesting conformational change between the monomers and the oligomers. Raman and Infrared spectroscopic measurements show the presence of considerable alpha helical content in the oligomers, whereas the larger aggregates have largely beta sheet character. Therefore, the conformation of the small oligomers is distinct from both the smaller monomers and the larger oligomers, and this is associated with an enhanced membrane affinity. This provides a possible structural basis for the enhanced toxicity of amyloid oligomers. Such change is also reminiscent of amyloid beta, another aggregation prone amyloidogenic peptide, though the nature of the conformational change is quite different in the two cases. We infer that conformational change underlying oligomer formation is a key factor in determining the enhanced membrane affinity of disease causing oligomers, but the toxic “oligomer fold” may not be universal.  相似文献   

9.
Summary A correlative approach, involving light and electron microscopic, cytochemical, and biochemical techniques, was used to study the structure and function of microbodies in zoospores ofEntophlyctis sp. The same population of microbodies already existing in the zoosporangium appeared to be segregated into zoospore initials during cytoplasmic cleavage. Microbodies laid at the anterior end of zoospores and were part of an organized assemblage of organelles, the microbody-lipid globule complex. In the microbody-lipid globule complex, endoplasmic reticulum occurred on the surface of the lipid globules toward the zoospore's exterior, and the microbody, subtended by mitochondria, was appressed to the opposite surface of the lipid globule. The organization of the microbody-lipid globule complex changed as the zoospore swam and encysted. As lipid globules coalesced, the microbody-lipid globule complex became disorganized. After lipid globule coalescence was completed, the microbody-lipid globule complex regained its order, and several microbodies were clustered adjacent to a single lipid globule. The microbodies persisted even in the encysted zoospore, but they were found on all sides of the lipid globule.Microbodies isolated from zoospores contained catalase as well as malate synthase and isocitrate lyase, two enzymes of the glyoxylate cycle. When zoospores encysted greater activities of these glyoxylate cycle enzymes could be detected. The presence of glyoxylate cycle enzymes and the close association between the microbody and lipid globule suggest that microbodies function as glyoxysomes in zoospores and encysted zoospores. The functional significance of the morphological organization of the microbody-lipid complex is discussed in terms of energy production and the conversion of storage lipid into structural components of the cell.  相似文献   

10.
Vasoactive intestinal polypeptide (VIP) containing nerves are present in close proximity to epithelial, endocrine, and vascular smooth muscle cells. The pineal gland, known also as a “neuroendocrine transducer organ” contains a high content of VIP which prompted us to characterize the binding sites for VIP in this organ. [Tyr10125I]VIP was bound selectively and specifically to pineal membrane preparations in a time-dependent fashion. Scatchard analysis demonstrated a single class of high affinity binding sites with a dissociation constant (Kd) value of 5.7 ± 0.52 nmol/1 and a receptor density (Bmax) value of 440 ± 35 fmol/mg protein. A Hill Plot with a slope of 1.013 indicated the absence of cooperativity. Covalent crosslinking with [Tyr10125I]VIP followed by SDS electrophoresis and autoradiography, revealed that the VIP binding protein exhibited a molecular weight of 51.8 ± 0.5 kDa. The precise function of pineal VIP binding protein remains to be delineated.  相似文献   

11.
1. Gap (communicating) junctions are plasma-membrane specializations of characteristic morphology that form transmembrane channels allowing direct communication between cells. Their preparation is described starting from mouse liver plasma membranes and the constituent polypeptides are deduced. 2. Gap junctions co-purify with collagen fibres when the plasma-membrane residues insoluble in N-dodecyl sarcosinate are fractionated on sucrose gradients. Sucrose-density perturbation by relipidation of isolated gap junctions or the use of urea to remove non-junctional membranes both failed to diminish the collagen content of fractions. 3. Removal of collagen by treatment with purified collagenase preparations yielded morphologically satisfactory gap-junction fractions. Analysis by polyacrylamide-gel electrophoresis of the polypeptides present in gap junctions prepared by procedures omitting or using collagenases indicated two non-glycosylated polypeptides, a major component of apparent mol.wt. 38000 and a minor 40000-mol.wt. component. These two polypeptides were also present in plasma membranes and the intermediate fractions. 4. Proteolysis of the gap-junction polypeptides yielding components of mol.wt. 34000, 25000 and below 20000 occurred when iodinated gap junctions were subject to prolonged collagenase treatment, thus explaining the variable polypeptide composition of gap junctions reported by others. 5. The morphological properties of the isolated gap junctions prepared by the various procedures are described.  相似文献   

12.
13.

With a steadily increasing population, the demand for crops to feed the world population and satisfy the energy needs is also increasing. The diminishing land resources and changing environmental conditions, specifically global warming, have further exacerbated these problems. Developing heat-tolerant crops that maintain yield under stress is one way to keep pace with future demands. Heat stress tolerance is a complex trait; hence it is vital to identify major contributors to heat stress tolerance and develop molecular markers to breed for them. The present communication reviews the recent progress made in this direction in oilseed crops soybean and peanuts, where heat-induced membrane lipid unsaturation was identified as an indicator of heat tolerance and the heat-induced changes in the expression pattern of the fatty acid desaturase gene as a marker to select for this trait. The further efforts underway and the future research needed in this direction are discussed.

  相似文献   

14.
Glyoxysomes in cotyledons of cotton (Gossypium hirsutum, L.) seedlings enlarge dramatically within 48 h after seed imbibition (Kunce, C.M., R.N. Trelease, and D.C. Doman. 1984. Planta (Berl.). 161:156-164) to effect mobilization of stored cotton-seed oil. We discovered that the membranes of enlarging glyoxysomes at all stages examined contained a large percentage (36-62% by weight) of nonpolar lipid, nearly all of which were triacylglycerols (TAGs) and TAG metabolites. Free fatty acids comprised the largest percentage of these nonpolar lipids. Six uncommon (and as yet unidentified) fatty acids constituted the majority (51%) of both the free fatty acids and the fatty acids in TAGs of glyoxysome membranes; the same six uncommon fatty acids were less than 7% of the acyl constituents in TAGs extracted from cotton-seed storage lipid bodies. TAGs of lipid bodies primarily were composed of palmitic, oleic, and linoleic acids (together 70%). Together, these three major storage fatty acids were less than 10% of both the free fatty acids and fatty acids in TAGs of glyoxysome membranes. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) constituted a major portion of glyoxysome membrane phospholipids (together 61% by weight). Pulse-chase radiolabeling experiments in vivo clearly demonstrated that 14C-PC and 14C-PE were synthesized from 14C-choline and 14C-ethanolamine, respectively, in ER of cotyledons, and then transported to mitochondria; however, these lipids were not transported to enlarging glyoxysomes. The lack of ER involvement in glyoxysome membrane phospholipid synthesis, and the similarities in lipid compositions between lipid bodies and membranes of glyoxysomes, led us to formulate and test a new hypothesis whereby lipid bodies serve as the dynamic source of nonpolar lipids and phospholipids for membrane expansion of enlarging glyoxysomes. In a cell-free system, 3H-triolein (TO) and 3H-PC were indeed transferred from lipid bodies to glyoxysomes. 3H-PC, but not 3H-TO, also was transferred to mitochondria in vitro. The amount of lipid transferred increased linearly with respect to time and amount of acceptor organelle protein, and transfer occurred only when lipid body membrane proteins were associated with the donor lipid bodies. 3H-TO was transferred to and incorporated into glyoxysome membranes, and then hydrolyzed to free fatty acids. 3H-PC was transferred to and incorporated into glyoxysome and mitochondria membranes without subsequent hydrolysis. Our data are inconsistent with the hypothesis that ER contributes membrane lipids to glyoxysomes during postgerminative seedling growth.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
A subtracted cDNA library comprising of 576 clones were constructed to isolate differentially expressed sequences in the pre-embryogenic tissue (PEC) of winter oilseed repe. After differential screening, only 16 clones were identified as potential positives. Eventually, only three clones: BNPE DG3, BNPE AE4 and BNPE EG1 were confirmed by Northern analysis as upregulated in␣PEC of the oilseed rape embryogenic culture. This is the first study to report Ae4, Dg3 and Eg1 sequences as preferentially expressed in the oilseed␣rape PEC and associated with the induction of somatic embryogenesis in B.napus secondary embryogenesis. Ae4 encodes a putative proline-rich protein, Dg3 encodes a lipid transfer-like protein and Eg1 encodes a napin, member of the BNMNAP subfamily.  相似文献   

16.
The intraorganellar distribution of superoxide dismutase (SOD) (EC 1.15.1.1) in two types of plant peroxisomes (glyoxysomes and leaf peroxisomes) was studied by determinations of SOD latency in intact organelles and by solubilization assays with 0.2 molar KCl. Glyoxysomes were purified from watermelon (Citrullus vulgaris Schrad.) cotyledons, and their integrity, calculated on the basis of glyoxysomal marker enzymes, was about 60%. Under the same conditions, the latency of SOD activity determined in glyoxysomes was 40%. The difference between glyoxysomal intactness and SOD latency was very close to the percentage of isozyme Mn-SOD previously determined in glyoxysomes (LM Sandalio, LA Del Río 1987 J Plant Physiol 127: 395-409). In matrix and membrane fractions of glyoxysomes, SOD exhibited a solubilization pattern very similar to catalase, a typical soluble enzyme of glyoxysomes. The analysis of the distribution of individual SOD isozymes in glyoxysomal fractions treated with KCl showed that Cu,Zn-SOD II, the major SOD isozyme in glyoxysomes, was present in the soluble fraction of these organelles, whereas Mn-SOD was bound to the glyoxysomal membrane. These data in conjunction with those of latency of SOD activity in intact glyoxysomes suggest that Mn-SOD is bound to the external side of the membrane of glyoxysomes. On the other hand, in intact leaf peroxisomes where only a Mn-containing SOD is present (LM Sandalio, JM Palma, LA Del Río 1987 Plant Sci 51: 1-8), this isozyme was found in the peroxisomal matrix. The physiological meaning of SOD localization in matrix and membrane fractions of glyoxysomes and the possibility of new roles for plant peroxisomes in cellular metabolism related to activated oxygen species is discussed.  相似文献   

17.
Intact glyoxysomes were isolated from castor bean endosperm on isometric Percoll gradients. The matrix enzyme, malate dehydrogenase, was 80% latent in the intact glyoxysomes. NADH:ferricyanide and NADH:cytochrome c reductase activities were measured in intact and deliberately broken organelles. The latencies of these redox activities were found to be about half the malate dehydrogenase latency. Incubation of intact organelles with trypsin eliminated NADH:cytochrome c reductase activity, but did not affect NADH:ferricyanide reductase activity. NADH oxidase and transhydrogenase activities were negligible in isolated glyoxysomes. Mersalyl and Cibacron blue 3GA were potent inhibitors of NADH:cytochrome c reductase. Quinacrine, Ca2+ and Mg2+ stimulated NADH:cytochrome c reductase activity in intact glyoxysomes. The data suggest that some electron donor sites are on the matrix side and some electron acceptor sites are on the cytosolic side of the membrane.  相似文献   

18.
Various washing procedures were tested on Triton-prepared PS II particles for their ability to remove the 33 kDa extrinsic polypeptide (33 kDa EP) associated with the water-splitting complex. Residual 33 kDa EP was evaluated by Coomassie blue staining of SDS gels of washed particles and by Western blotting with an antibody specific for the 33 kDa EP. A wash with 16 mM Tris buffer, pH 8.3, inhibited water-splitting activity but did not remove all the 33 kDa EP. Sequential washes with 30 mM octyl glucoside (pH 8.0 and 6.8), and a single wash with 0.8 M Tris were also ineffective in removing all the 33 kDa EP. Washing with 1 M CaCl2 was more effective in removing 33 kDa EP; while only a faint trace of protein was detectable by Coomassie-staining, immunoblotting revealed a considerable remainder. The treated particles retained some water-splitting activity. The two step procedure of Miyao and Murata (1984) involving 1 M NaCl and 2.3 M urea was most effective, removing all but a trace of antibody positive protein. Our finding suggests that (1) the degree of depletion of the 33 kDa EP cannot be judged on the basis of Coomassie stain alone, and (2) this extrinsic protein is very tightly associated with the membrane, perhaps via a hydrophilic portion of this otherwise hydrophilic protein. The results also suggest that the presence or absence of the 33 kDa protein per se is not the primary determinant of residual water splitting activity.Abbreviations Chl chlorophyll - DCPIP dichlorophenolindophenol - DPC diphenolcarbazide - DTT dithiothreitol - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MES 2(N-morpholino)ethanesulfonic acid - SDS sodium dodecyl sulfate - Tris Tris(hydroxymethyl)aminomethane  相似文献   

19.
Wang L  Zheng Y  Zhang X 《IUBMB life》2002,54(1):13-18
Xanthomonas campestris pv. campestris, a plant-associated pathogenic bacterium, is the causal agent of foliar spots and blights in crucifers. The major outer membrane protein, Omp37, of 37 kDa, has been identified, purified to homogeneity, and its characterization has also been carried out. Native Omp37 behaved as a trimer, as revealed by gel filtration and SDS-PAGE. FTIR measurements revealed a high beta-structure content. The pore-forming ability of the purified Omp37 was studied by the liposome swelling assay. Omp37, to our knowledge, is the first porin that has been isolated from Xanthomonas. This study clearly demonstrates that Omp37 is related to the family of trimeric bacterial porins.  相似文献   

20.
How proteins get into microbodies (peroxisomes, glyoxysomes, glycosomes)   总被引:31,自引:0,他引:31  
All microbody proteins studies, including one microbody membrane protein, are made on free polysomes and imported post-translationally. This holds for animal tissues, plants, and fungi. The majority of microbody protein sub-units are synthesized in a form not detectably different from mature sub-units. In five cases a larger precursor protein has been found. The position of the extra piece in this precursor is not known. In two of the five cases, processing of the precursor is not coupled to import; in the other three this remains to be determined. It is not even known whether information in the prepiece contributes to topogenesis, or serves other purposes. Microbody preparations from Neurospora, plant tissue and rat liver can take up some newly synthesized microbody proteins in vitro. In most cases uptake is inefficient. No special requirements for uptake have been established and whether a receptor is involved is not yet known. Several examples have been reported of peroxisomal enzymes with a counterpart in another cell compartment. With the exception of catalase, no direct evidence is available in any of these cases for two isoenzymes specified by the same gene. In the Zellweger syndrome, a lethal hereditary disease of man, characterized by a lack of peroxisomes, the levels of several enzymes of lipid metabolism are strongly decreased. In contrast, D-amino-acid oxidase, L-alpha-hydroxyacid oxidase and catalase levels are normal. The catalase resides in the cytosol. Since there is no separate gene for cytosolic catalase, the normal catalase levels in Zellweger cells show that some peroxisomal enzymes can mature and survive stably in the cytosol. It is possible that maturation of the peroxisomal enzyme in the cytoplasm can account for the finding of cytosolic catalase in some normal mammalian cells. The glycosomes of trypanosomes are microbodies that contain a glycolytic system. Comparison of the glycosomal phosphoglycerate kinase with its cytosolic counterpart has shown that these isoenzymes are 93% homologous in amino-acid sequence, but less than 50% homologous to the corresponding enzymes of yeast and mammals. This implies that few alterations are required to direct a protein into microbodies. This interpretation is supported by the evidence for homology between some microbody and mitochondrial isoenzymes in other organisms mentioned under point 4. The major changes of the glycosomal phosphoglycerate kinase relative to the cytosolic enzyme are a large increase in positive charge and a C-terminal extension of 20 amino acids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号